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ABSTRACT

This study consists of three parts. In the first part, a comprehensive investigation was made
to find an improved estimation method for the log-Pearson type 3 (LP3) distribution by using
optimization techniques. Ninety sets of observed Louisiana flood data and 690 sets of Monte
Carlo simulated LP3 data were used for the study. Based on the performances of 20
alternative optimization methods, a superior estimation method (named MALS), was found.
As compared with the method of moments (MOM), the MALS method reduced the standard
root mean square error (RMSE) by eight percent and the standard bias (BIAS) by 47 percent
for the Monte Carlo simulated data. For the observed flood data, the MALS method reduced
the relative root average square error (RRASE) by 13.5 percent and the relative average bias
(RAB) by 46 percent as compared with MOM.

In the second part of the study, an indexed regional optimization (IRO) procedure was
developed to estimate the parameters of the generalized extreme value (GEV) distribution.
The IRO procedure reduced RRASE by 20 percent and RAB by 100 percent as compared
with the indexed regional probability weighted moments (IRPWM) procedure for the
observed flood data.

In the third part of the study, the TRO procedure was extended to sites where no flood
records were available, Limited verification showed that the extended procedure was

reasonably accurate for watersheds of smaller than 1000 square miles.
Flood quantiles at the return periods of 2, 10, 25, 50, and 100 years were calculated by both

the LP3/MALS and by the GEV/IRO at the 90 stream gauge sites. A procedure for
estimating flood quantiles at ungauged sites is outlined with updated regional flood quantiles.

Page iff L Tﬂem




IMPLEMENTATION STATEMENT

The MALS method developed in this study has been tested by using 90 observed Louisiana
flood data and 690 Monte Carlo simulated data sets. All tests showed that the MALS method
is superior to the method of moments (MOM) for estimating the parameters of the log-
Pearson type 3 distribution. Similarly, the indexed regional optimization (IRO) procedure
developed in this study is superior to the indexed regional probability weighted moments
(IRPWM) procedure for estimating the parameters of the generalized extreme value
distribution. Flood quantiles at 90 stream gauge sites have been predicted for six commonly
used return periods by using the MALS method, the MOM method, the IRO procedure, and
the IRPWM procedure. A procedure for estimating flood quantiles at ungauged sites is
outlined in the third part of this study.

The findings of this study could easily be adopted by the DOTD design personnel. There
appears to be no costs associated with the implementation of the recommended MALS
method and the indexed regional optimization procedure for flood frequency analysis in
Louisiana. It is anticipated that the findings of this study will permit more reliable design

of highway drainage structures, resulting in savings in both construction and maintenance.
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CHAPTER 1
INTRODUCTION

“In highway hydraulics design and maintenance work, accurate estimation of stream
‘discharges are needed for a cost-effective design. The U.S. Water Resources Council
(USWRC) has recommended the Log-Pearson type 3 (LP3) distribution along with the
“method of moments (MOM) for parameter estimation since 1967 [1] for at-site frequency

estimating the parameters of the LP3 distribution {2/ [3] 4] [5] /6] [7]. However, no general
‘consensus on the performance of a specific estimation method has been reached to date. An
éxamination of the past studies on parameter estimation indicates that if a method is found
‘to perform well for a specific distribution by using Monte Carlo simulation, it may perform
poorly on observed flood data, and vice versa. The reasons for these contradictory results
are (1) the underlying population distribution is unknown for the observed data sets, (2) an
‘estimator that performs superior for one distribution may not perform as well for another
distribution, and (3) the performance indices for the observed data and for the Monte Carlo
simulated data are usually not the same. In practice, a compromise has to be made to select
an estimation method that performs relatively well for both types of data so that one may
expect the estimation error not to change substantially for different distributions and data
sets. Comparatively, MOM has been found to be a relatively simple and reliable estimator
for the LP3 distribution.

In recent years, a great deal of effort has been invested in regionalizing statistical parameters
{8] [9]. Regional frequency analysis consists of fitting a preselected probability distribution
by using data from a group of stations with similar response to climatic conditions.
Therefore, regionalization techniques have the advantage of reducing the uncertainty inherent
in an individual station with short records. Other advantages of regionalization techniques
are the ease of the use of regional quantiles for design purposes as well as their applicability

to sites where flood records are not available.
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Regional frequency techniques have been proposed by Dalrymple [10], Stedinger /11 and
Kuczera [12]. Greis and- Wood [8] recommended an indexed method similar to that of
Dalrymple {10], but with the generalized extreme value . (GEV) distribution as the base
distribution and the method of probability weighted moments (PWM) as the parameter
estimation method. This PWM method, first proposed by Greenwood, et al. 73], has been
shown to possess very attractive asymptotic characteristics when used to estimate the
parameters of several distributions, especially in cases where the samples exhibit wide

variability f14]. This characteristic makes the method very useful for regional frequency

analysis. In support of this, Potter and Lettenmaier /15] tested 10 commonly used frequency -

methods and found that the indexed regional PWM procedure possessed predictive
characteristics superior to the other methods tested. The indexed regional PWM procedure
(IRPWM) were also applied to the GEV distribution by Hosking, et al. f16] and Schaefer
[17], and is the recommended procedure in the United Kingdom.

Flood quantile estimation for an ungauged site is encountered frequently in practice. Many
studies have been carried out to find a simple and accurate methodology to estimate flood
quantiles at ungauged sites /187 f19] {20]. Naghavi, et al., {21] applied the indexed regional
PWM procedure to the GEV distribution using 85 sets of stream data from Louisiana. In
their study, the state was divided into four hydrologically homogeneous regions, which are
expected to have similar response to climatic conditions. Four regional regression equations
were developed to represent the relationship between the mean annual maximum flood and
the drainage area. With these regression equations, a procedure for estimating flood quantiles

at any ungauged site was developed.

In spite of all recent statistical developments in the area of hydrological sciences, there still
remains many challenging problems that need to be resolved. Some of these problems which
directly influence design of hydrologic structures are parameter estimation and

regionalization schemes.
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CHAPTER 2
OBJECTIVES

The objectives of this study are:

(1) to develop a method (named MALS), which combines the method of moments, the
method of least squares, and the conjugate gradient optimization algorithm, to
estimate parameters of the log Pearson type 3 (LP3) distribution;

(2) to compare performance of the MALS method with the method of moments (MOM), the
maximum likelihood estimate (MLE), and the method of maximum entropy (MME)
by using both Monte Carlo simulated data and observed flood data;

(3) to predict flood quantiles for the recurrence intervals of 2, 5, 10, 25, 50, and 100 years
at 90 Louisiana stream gage sites by using the MALS method;

(4) to develop an indexed regional optimization (IRO) procedure to estimate the parameters
of the generalized extreme value (GEV) distribution;

(5) to compare the performance of the IRO procedure with the indexed regional probability
weighted moments (IRPWM) procedure by using the observed flood data; i

(6) to calculate flood quantiles for 90 Louisiana stream gauge sites at the recurrence intervals
of 2, 10, 25, 50, and 100 years by using the IRO procedure; and,

(7) to extend the indexed regional optimization procedure to estimate flood quantiles at

ungauged sites.
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CHAPTER 3
SCOPE

The scope of this study encompassed the development and evaluation of at-site and regional
_ parameter estimation procedures in order to improve the prediction accuracy of flood
quantiles at both gauged and ungauged sites in Louisiana. Ninety sets of observed annual
~maximum flood data and 690 sets of Monte Carlo simulated LP3 data were used for the

- study.

~ An at-site parameter estimation method, which combines the method of moments and the
- method of least squares, was selected from 20 alternative methods tested. The selected
| method, named MALS, was compared with the method of moments (MOM), the method of
maximum likelihood estimate (MLE), and the method of maximum entropy (MME).
Conjugate gradient search algorithm was used to find the optimal set of parameters of the
log Pearson type 3 distribution by minimizing both the relative root average square errors

(RRASE) and relative average bias (RAB) between observed and estimated quantiles.

An indexed regional optimization (IRO) procedure was developed to estimate the parameters
of the generalized extreme value (GEV) distribution. The parameters estimated by the
indexed regional probability weighted moments (IRPWM) procedure serves as the initial
estimates for the IRO procedure. The optimal set of regional parameters of the GEV
distribution was then obtained by minimizing the relative root average square errors and
relative bias between the observed and estimated quantiles in each homogeneous region,
using the conjugate gradient search algorithm. The performance of the IRO procedure was

compared with that of the IRPWM procedure.

Finally, a flood estimation procedure was developed by combining the IRO procedure with
the regional regression equations developed by Naghavi, et al., /21, which related the mean

annual maximum flood to the watershed drainage area, to estimate flood quantiles at

ungauged sites.
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CHAPTER 4
AT-SITE FLOOD FREQUENCY ANALYSIS

Flood Frequency Analysis by the Conventional Procedure

s previously discussed in the introduction section, in conventional frequency analysis one
Iﬁay subjectively select some of the most frequently used distributions and parameter
‘ stimation methods and compare the computed results based on some selected performance
indices such as the RRASE and RAB using the observed data. Then, the best combination

of distribution and parameter estimation method is selected for the prediction of quantiles.

The computed RRASE and RAB for each of the 90 Louisiana stations were obtained by a
comprehensive computer program developed by Naghavi, et al., [7]. This program can
cﬁmpute the RRASE and RAB for five distributions and three estimation methods. The five
distributions considered are;

(1) Two-parameter log-normal (LNOZ2)

(2)  Three-parameter log-normal (LNO3)

(3)  Pearson type 3 (PT3)

{4)  Log-Pearson type 3 (LP3)

(5)  Extreme-value type 1 (EV1 or GUMBEL)

The three parameter estimation methods are:

(1) Method of moments (MOM)

(2) Maximum likelihood estimate (MLE)

(3) Method of maximum entropy (MME)

The average RRASE and average RAB for the 90 stations are listed in Tables 1 and 2
~ respectively. It is seen from Tables 1 and 2 that the LP3 distribution with MOM gave the
- smallest average RRASE for the 90 Louisiana stations whereas the EV1 distribution with the
- MME for parameter estimation gave the smallest RAB. In this situation, the LP3 /MOM

would be selected as the best combination of distribution and method for the data because
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the RRASE is normally consid;red to be a more significant index than the RAB in practice,
provided that the computed RAB is not excessively large as compared with other alternatives.
Thus, based on the conventional frequency analysis procedure, the LP3/MOM is the best
choice for predicting flood quantiles for the 90 flood gauge stations.. -

Table 1. Average RRASE for Five Distributions and Three Estimation Methods for
90 Sets of Louisiana Flood Data

Distribution

LNO2 LNO3 PT3 LP3 EV1

MAX 1.391 1.738 2.635 0.524 4.477
MOM AVG 0.339 0.343 0.328 0.171 0.749
MIN (.086 0.067 0.044 0.046 0.082
MAX 0.717 0.782 4.999 0.694 1.175

MLE AVG (.207 0.230 0.990 0.208 0.324
MIN 0.075 0.085 0.055 0.079 0.080
MAX 0.717 5.575 5.698 0.721 1.450
MME AVG 0.206 0.863 1.150 0.208 0.403
MIN 0.074 0.031 0.050 0.078 0.071
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At-site Flood Frequency Analysis

Table 2. Average RAB for Five Distributions and Three Estimation Methods for 90
- Sets of Louisiana Flood Data

Distribution

LNO2 LNO3 PT3 LP3 EV1

MAX 0.577 0.179 1.040 0.153 0.074
MOM AVG 0.092 -.053 0.027 0.026 -.171
MIN -.164 -.688 -.265 -.027 -1.58
MAX 0.124 0.197 0.064 0.120 0.889

MLE AVG 0.029 0.036 -.160 0.024 0.043
MIN 0.007 0.007 -1.51 0.000 -.082
MAX 0.124 0.063 0.062 0.123 0.110
MME AVG 0.029 -.140 -.216 0.026 -.001
MIN 0.007 -1.77 -.994 0.006 -.180

The Log-Pearson Type 3 Distribution

Let X and Y be two random variables related as Y=In(X). If Y is Pearson type 3
distributed, then X is log-Pearson type 3 (LP3) distributed. The probability density function
of the LP3 distribution is defined by:

) = 1 [ln(l;) —CJ b-1 exp(_li(lfau) (1)
Fal xT(b)

where a, b, and c are the scale, shape, and location parameters, respectively. The population
mean p,, standard deviation o, and the coefficient of skewness v, of the variate Y can be

expressed in terms of the distribution parameters as:

py=c+ab (2)
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lal 2 oo
Ty = — (4)
a ﬁ
The distribution parameters a, b, and ¢ can be calculated from the above three equations as:
b = -% (5)
Ty
1
20y
~ . 20y 7
= uy Ty (7)

The U.S. Water Resources Council [1] recommended the use of LP3 distribution along with
the method of moments for parameter estimation in 1967. The LP3 has since been
extensively studied and applied to hydrological frequency analysis [22] 23] [24] 12] [25 ] [26]
[4] [6] [7]. However, the use of method of moments for estimating the parameters of the
LP3 distribution is still controversial. Many studies have been carried out to compare
different parameter estimation methods using either observed flood data or data generated
by Monte Carlo simulation {31 [4] 51 [6] [7]. A general consensus on the performance of
a specific estimation method has not been reached to date. Based on some of the past studies
On parameter estimation, one may find that if a method is found to perform well by Monte
Carlo simulation, it may perform poorly on most of the observed flood data, and vice versa.
For example, Arora and Singh /6] found that the method of mixed moments (MIX) performs
the best in their Monte Carlo simulation; Jain 727/, however, found MIX performs the worst
using 55 observed annual maximum flood data. MOM is normally found to perform better
for most observed flood data 1] 2] (5] [7], however, MOM was found to perform poorly
in Monte Carlo simulation {6]. The reason for these contradictory results is that for the
observed data, the underlying population distribution and its parameters are unknown. The

underlying distribution(s) could also be g combination of two or even more distributions /28;.
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Ar-site Flood Frequency Analysis

For this reason, one normally tries several flexible distributions along -with several parameter
estimation methods, and selects the combination that fit the data best [7]. This practical

ocedure, of course, does not always warrant that the final selection is the correct one.

Performance Indices

“The commonly used performance indices for the two types of data are generally different.
‘Use of different performance indices may exhibit contradictory evaluation of a specific
‘method. In terms of quantile prediction, the performance indices for Monte Carlo simulation

are usually the standard root mean square error (RMSE) and the standard bias (BIAS) fo7:

RMSE = | 1 Z —x"—(‘l—l’f (8)
i=1
i Z (i) | - x
BIAS = ==L (9)

' _Where m is the number of synthesized samples with the sample size n, x is the population
: quantile generated by using the population parameters for a specific return period T, and x,(i)

is the computed quantile by using the estimated population parameters for the i-th sample

with sample size n and the given return period T.

On the other hand, the performance indices for observed data are usually the relative root

average square error (RRASE) and the relative average bias (RAB) between the observed and

estimated quantiles using some plotting-position formula 2]

n 2
wras | L S 2 -2()
" 1-—_21 Zo(2) o)
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= | 2) - 2
RAB =1 [“*‘——"x - z)] (11)

where Xo(i) is the observed quantile at the j-th plotting position. Most of the performance
evaluations of various methods have been based on only one type of data [2] {57 [6]. When
a parameter estimation method is found to be superior based on one type of data, that method
may perform poorly on the other type of data. Therefore, it is desirable to test the

performance of an estimation method using both types of data,

Parameter Estimation
Some of the frequently used estimation methods in applied hydrology are: (1) the method of

moments (MOM); (2) the maximum likelihood estimate (MLE), (3) the method of maximum |
entropy (MME); and (4) the least square method (LSM). Each of these methods has its
advantages and disadvantages. The method of moments is good if the order of the moments
used is no higher than two and the record length is sufficiently long (say at least 20
observations). Estimation involving the third, or higher, moment can be prone to-large
errors. To alleviate this problem, many combined or mixed parameter estimation methods
have been proposed. For example, Houghton /297 proposed the method of incomplete means,
Greenwood et al. f13] proposed the method of probability weighed moments, Rao [30]
proposed the method of mixed moments, Hosking [9] proposed the method of L-moments,
among others. The MLE and the MME methods normally perform similarly for both types
of data. Numerical difficulties are, however, often experienced when solving the equations
resulting from the two methods. The least square method is comparatively less used in
frequency analysis partly because the resulting equations are nonlinear and their solutions are
not unique. The methods of MOM, MLE, and MME, applied to the LP3 distribution, have
been discussed by a number of authors in literature L2]{3][4][5](6](7]. Therefore, only a

summary of these methods is presented here:
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As-site Flood Frequency Analysis

MOM: the LP3 distribution parameter a, b, ¢ can be estimated by equations (5) through (7),
where the log-transformed population parameters Pys Oy and v, are estimated by the sample

mean Y, sample standard deviation S, and sample skewness G, as

7 =3 ) m[xl)] (12)

1=

{infx,@)] - 7)° (14)

where X is a bias correction factor for the effect of sample size. One of the frequently used

equations for the bias correction factor was given by Bobee and Robitaille 2]

_ (n—l)[l +%J n?.n

A= (15)
n2 (n-2)
MLE: the estimation equations for the distribution parameters are given as
S
¢ = — (16)
nb
8,8
1-2
= 5 (17)
3159 - n
n
1 i)) -c
n¥@d)- Y In n (o)) =0 (18)

[
i
-
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n

8; =) [In(xefi)) -]

i=1

13

Sg= ) (20)

=1 In (i) - c

and ¥(b) is the digamma function and can be approximated by 32/

Y(b)=lnb+2)- o - —L
2(b+2)  12(b+2)" 120 (b+2) |
-— 6 'bll"lé (1)
252(b+2)

A numerical procedure to calculate parameters a, b, and ¢ from equations (16) through (18)
has been given by Arora and Singh /6]. Once these three parameters are computed, the
mean, variance, and coefficient of skewness can be estimated by equations (12) through (14),

respectively.

MME: The parameter estimation equations for this method are:

Sy = lal b (22)
nab = Z {ln [xo(z)] - c} (23)
i=1

n¥(b) = Z In {}ﬂ:—%} (24)

i=1

A numerical procedure to solve equations (22) through (24) for parameters a, b, and ¢ was

also given by Arora and Singh f6]. Once the parameters a, b, and ¢ are computed, the log-
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At-site Flood Frequency Analysis

transformed mean, variance, and the coefficient of skewness_ can then be calculated by

equations (2) through (4), respectively.

Since MOM has been extensively studied and recommended by USWRC for estimating

parameters in the LP3 distribution, the question is: does there exist a method that performs

better than MOM on both types of data? The objective of this part of the study is to answer

this question by conducting the following tasks:
(1) to find a better estimation method for the parameters of the LP3 distribution than
MOM for both types of data;
(2) to compare the performance of the proposed method with MOM, MLE, and
MME; and
(3) to update all flood quantiles at 90 Louisiana stream gauges.

Data Preparation
Observed Annual Maximum Flood Data:

Annual maximum flood data for all Louisiana stream gauges were obtained from the U.S.
Geological Survey. In order to obtain valid statistical analysis, stations having less than 20
years of records or stations at regulated streams ware eliminated from the data. Furthermore,
station having drainage areas of less than 10 square miles and record lengths less than 30
years were also eliminated from the data because observations from very small drainage
areas with short record lengths are subject to large errors. A total of 90 stations were
selected in this study. Figure 1 shows the locations of these stations, in which 84 stations are
from Louisiana, one from Mississippi (2492360}, two from Arkansas (7364190, 7365800),
and three from Texas (8031000, 8030000, 8029500). Table 3 lists the locations, record
period, record length, and drainage areas of these 90 stations. Table 4 lists the basic

statistics of the raw data as well as the log-transformed data. Average record length for the
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90 data sets is 36 years. The coefficient of variation, ¢,/X, of the original data varies from
0.29 to 0.71, and the coefficient of skewness varies from -0 45 to 6.48.

Monte Carlo Simulated Data:

In order to evaluate the performance of a parameter estimation method by Monte Carlo f
simulation, 690 random samples from LP3 distribution were generated. The population
parameters were chosen, based on Louisiana flood data characteristics, as a=0.125, b= 16,
and ¢=38; or equivalently, py=10, ¢,=0.5, and v,=0.5. The Monte Carlo simulation
consisted of two parts, a preliminary test and an extended test. For the preliminary test, 90
LP3 random samples were generated using the selected parameters (nine sample sizes of 15,
20, 25, 30, 40, 60, 80, 100, and 500 with ten samples at each sample size). For the
extended test, 600 LP3 random samples were generated (six sample sizes of 20, 30, 40, 60,
100, and 500 with 100 samples at each samples size). The algorithm for generating the LP3

random samples by Monte Carlo simulation is provided in Appendix B.
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Table 3. Louisiana Stream Gauges

- STATION RECORD No. LATITUDE LONGITU. AREA HOMO.
NUMBER PERIOD OBS.  #pops iy HAHR " (SQ.MIL) REGION

2492000  1938-1990 53 303745 895350 1213 SE
2492360  1966-1986 21 303942 894110 175 SE
2490105 1964-1985 22 304656 895224 72.7 SE
7378500  1939-1990 52 302750 905925 1280 SE
7375222 1966-1990 25 302855 900220 46.1 SE
7380160  1951-1983 33 302945 905030 20.3 SE
7375170 1964-1983 20 302958 900504 88.2 SE
7376000  1941-1990 50 303013 904038 247 SE
7376500  1944-1990 47 303015 903245 79.5 SE
7375500  1939-1990 52 303023 902142 646 SE
7377300  1949-1983 35 303205 905850 384 SE
7376600  1951-1982 32 303340 902855 13.8 SE
7375480  1964-1983 20 303622 901956 91 SE
7375000 1944-1990 47 303657 901455 103 SE
2491500  1922-1990 69 305034 900943 590 SE
2491700  1964-1983 20 305140 900655 44.2 SE
2491350  1966-1986 21 305316 901128 42,2 SE
7377000 1949-1990 472 305320 905040 580 SE
7378000  1944-1990 47 303045 910425 284 SE
7377500 1943-1990 48 304521 910238 145 SE
7373500  1950-1970 21 305520 911735 35.3 SE
7369500  1930-1990 35 322555 912200 309 NE
7370000  1928-1990 63 322725 912830 782 NE
7368500  1950-1977 28 324755 913005 42 NE
7364500  1929-1980 32 325220 915204 1645 NE
7386500  1943-1970 3§ 302540 920530 19 SW
8012000  1939-1990 52 302850 923755 527 SW
8010000  1936-1990 32 302500 922925 131 SW
8015500  1939-1990 32 303010 925455 1700 SW
8011800  1964-1990 27 303710 923710 43.9 SW
8013500  1939-1990 32 303825 924850 753 SW
8014500  1940-1990 51 304155 925335 510 SW
3014000  1957-1983 27 304852 925534 171 SW
8014200  1950-1986 37 305011 925226 94 SwW
8013000  1944-1990 37 305945 924025 499 SW
7382000  1938-1990 53 310000 922246 240 SwW
7381800  1954-1986 33 310000 923400 68 SW
7373000  1942-1990 49 313210 922430 51 NwW
7353500  1943-1968 26 314115 925240 47 NW
7372500 1940-1970 31 314258 921320 92 Nw
7372200  1958-1990 33 314515 922040 1899 Nw
7370750  1954-1983  3p 315230 921335 47.6 Nw
7372110 1965-1990 36 315510 923315 24 NwW
7372000  1940-1981 42 315830 913910 654 NwW
7370500  1941-1970 30 320455 921225 271 Nw

SE=Southeast, SW=Southwest, NE=Northeast, NW =Northwest
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r-site Flood Frequency Analysis

Table 3. Louisiana Stream Gauges (cont’d)

STATION RECORD No. LATITUDE LONGITU. AREA HOMO.
NUMBER PERIOD OBS.  ###E#" HiHe #E" (SQ.MIL.) REGION
7371500 1939-1990 52 321225 924805 355 NW
7352000 1941-1990 50 321500 925835 154 NW
7373550 1957-1986 30 310520 911430 0.21 SE
7366420 1966-1990 25 323230 922245 113 NwW
7365000 1941-1968 28 324050 923910 355 NwW
7364870 1966-1990 25 324120 925130 47 NW
7365500 1941-1970 30 324550 923930 178 NW
7366000 1941-1983 43 325315 923425 462 NW
7366200 1956-1990 35 325545 323758 208 NW
7364700 1956-1977 22 325719 822959 141 NW
8031000 1953-1986 34 301110 935430 83 SW
8016800 1954-1984 31 301959 933744 177 SW
8030000 1952-1983 32 322552 935428 69.2 SW
8016400 1946-1984 39 302815 932135 148 SW
016600 1946-1983 38 303005 931635 82 SW
8015000 1940-1970 31 304055 930215 238 SwW
8028700 1956-1981 26 304332 933336 13.1 SW
8029500 1952-1987 36 304908 934707 128 Sw
8014600 1964-1983 20 305105 931445 26.3 SwW
8028000 1952-1990 39 305710 932110 365 Sw
8013800 1963-1983 21 305805 930045 10.4 Sw
8025850 1967-1986 20 310432 932922 9.66 SW
- 8025500 1956-1986 31 311825 933056 148 SW
7354000 1950-1979 30 312430 931015 21.4 SwW
7353990 1966-1990 25 312520 931014 37.3 SW
- 8023000 1956-1983 28 315825 935815 96.5 SW
7351700 1958-1983 26 320605 934145 19.5 SW
7352500 1941-1983 43 321540 931250 423 NwW
7351500 1939-1990 52 321800 934940 66 SwW
7351000 1939-1981 43 322235 934920 79 SwW
7344450 1956-1986 31 323100 935820 80.5 SW
2490000 1949-1968 20 325205 900010 12,1 SE
7348700 1958-1950 33 325940 932347 605 NwW
7349500 1939-1990 52 325418 032858 346 NW
7348725 1966-1990 25 325555 931730 33.1 Nw
7348800 1954-1977 24 324610 931600 66.9 NW
7347000 1945-1969 25 325125 935220 116 NwW
7364190 1926-1970 45 330415 913440 1170 NE
7365800 1956-1984 29 330221 925615 180 NwW
7362100 1939-1988 50 332233 924637 385 NwW
2489500 1939-1990 52 304735 894915 6573 SE
7375800 1956-1990 35 305550 904024 89.7 SE
7375307 1966-1990 25 305723 903013 52 SE
8014800 1956-1979 24 304909 931351 120 SwW
7368000 1928-1990 63 322852 814752 1226 NE
SE=Southeast, SW=Southwest, NE=northeast, NW =Northwest
LTRC ——
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Table 4. Statistics of 90 Sets of Louisiana Flood Data
STATION No. OF _ _

. NUMBER OBS. X S, G, - -Y S, G,
2492000 53 26378 22745 3.124 9.897 0.765 -0.073
2492360 21 7289 4417 1.445 8.719 0.615 -0.034
2490105 22 3006 2476 1.941 7.702 0.807 0.181
7378500 52 34432 24543 1.795 10.21 0,709 -0.160
7375222 25 2601 1419 0.035 7.673  0.684 -0.958
7380160 33 1194 567 0.528 6.962 0.523 -0.449
7375170 20 4687 2960 1.827 8.287 0.600 0.517
7376000 50 6830 5036 1.627 8.570 0.753 -0.276
7376500 47 3666 2128 1.579 8.054 0.563 -0.038
7375500 52 17840 14915 2.587 9.490 0.800 -0.148
7377300 35 29957 18159 1.644 10.14 0.584 0.217
7376600 32 1372 509 0.092 7.145  0.430 -1.180
7375480 20 8558 7293 2.479 8.695 0.921 -0.352
7375000 47 6154 5775 2.332 8.314 0.959 -0.217
2491500 69 26818 19873 2.330 9941 0.752 -0.398
2491700 20 4298 4087 2.409 7.827 1.231 -1.062
2491350 21 3073 2603 2.104 7.687 0.869 0.106
7377000 42 27637 22097 1.725 9.893 0.883 -0.444
7378000 47 12561 6940 1.258 9.274 0.614 -0.745
7377500 48 3800 5981 0.776 8.816 0.781 -0.343
7373500 21 7539 4584 1.100 8.731 0.675 -0.492
7369500 55 2774 792 -0.048 7.883 0.313 -0.789
7370000 63 5495 2176 0.434 8.528 0.427 -0.589
7368500 28 1102 372 0.584 6.946 0.359 -0.760
7364500 52 7108 2554 0.067 8.780 0.485 0.219
7386500 28 1223 532 1.098 7.000 0.521 -1.839
8012000 52 9351 6530 3.048 8.988 (.521 1.071
8010000 52 5201 2490 0.818 8.428 0.551 -1.214
8015500 52 34751 28780 2.875 10.22  0.685 0.049
8011800 27 2482 1930 1.749 7.707  0.765 -0.732
8013500 52 18218 13350 2.443 0,585 0.687 -0.160
8014500 51 17048 21080 5.559 9,352 0.868 0.115
8014000 27 5786 5231 2.932 8.365 0.768 0.404
8014200 37 5226 5544 4.343 8.201 0.857 -0.023
8013000 47 17300 12771 1.849 9.48% 0.790 -0.599
7382000 53 2234 3820 7.547 7.366 0.646  2.424
7381800 33 2855 2229 1.657 7.659 0.816 -0.288
7373000 49 4978 5323 2.123 7.949 1.131 -0.053
7353500 26 3064 3412 2.443 7.368 1.274 -0.234
7372500 31 4772 5723 5.566 8.162 0.697 1.544
7372200 33 27215 22839 2.261 9.875 0.884 -0.501
7370750 30 2582 2215 3.085 7.603 0.690 0.713
7372110 26 3888 4635 2.373 7.686 1.068 0.767
7372000 42 9309 6224 1.152 8.851 0.881 -1.373
7370500 30 6399 5123 1.779 8.375 1.044 -1.451
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At-site Flood Frequency Analysis

Table 4. Statistics of 90 Sets of Louisiana Flood Data (Cont’d)

STATION  No. OF

NUMBER  OBS. X S, G, ' S, G,

7371500 52 8997 7946 2.484 8.767 0.874 -0.573
7352000 50 3595 3040 1.817 7.848 0.863 -0.173
7373550 30 231 95 0.829 5.356  0.440 -0.705
7366420 25 5498 6857 3.693 8.100 1.014 0.319
7365000 28 7696 6156 2.313 8.661 0.803 -0.460
7364870 25 2088 2817 3.631 7.622  0.994 -1.407
7365500 30 4001 5035 5.432 7.930 0.776  1.294
7366000 43 8311 9224 4.183 8.675 0.820 0.147
7366200 35 4797 4915 3.837 8.126 0.859 -0.297
7364700 22 4485 6433 3.856 7.874 0918  1.908
8031000 34 1701 1160 1.715 7233 0.659 -0.103
8016300 3] 4442 3622 3.600 8.173 0.669 0.109
8030000 32 2541 1617 2.066 7.665 0.610 -0.217
8016400 39 4892 3557 2.050 8278 0.661 0.262
8016600 38 5063 3191 1.314 8353 0.594 0,459
8015000 31 8611 8363 2.230 8.613 0988 0.021
8028700 26 935 651 4.047 6.688 0.528  0.956
8029500 36 3343 4434 3.294 7.844 0.844  1.083
8014600 20 2556 2248 2.516 7.532  0.811 0.199
8028000 39 13887 15419  2.349 9.014 1.036 0.400
8013800 21 1320 1018 2.207 6.902 0.817 -0.758
3025850 20 789 771 3.556 6.365 0.747 1.235
8025500 31 6448 7475 2,714 8.303 0.922 0.967
7354000 30 2958 1458 0.531 7.854  0.572 -0.963
7353990 25 4336 4517 2,269 8.072 0974 -0.312
8023000 28 2487 1847 1,022 7.549 0.782 -0.342
7351700 26 1501 2294 6.482 6.865 0.887  0.505
7352500 43 4894 3411 1.344 8.269 0.632 0.215
7351500 52 5992 4442 1.925 8.392 0.903 -1.440
7351000 43 4237 3041 1,457 8.043 0.907 -1.387
7344450 3] 4132 4323 3.193 7.940 0.887 0.067
2490000 20 2412 2448 2.935 7.248 1.208 -0.969
7348700 33 9324 8183 2.478 8.806 0.856 -0.211
7349500 52 5347 3570 1.595 8.359 0.713 -0.492
7348725 25 2092 1626 2.938 7.320 0.977 -2.156
7348800 24 2545 2234 2.025 7.526 0.823 -0.021
7347000 25 1561 774 3.384 7.263 0.422  0.494
7364190 45 4699 1635 -0.447 8363 0481 -2.361
7365800 29 7568 12738 5.305 8.322 1.038 0.538
7362100 50 9001 9105 3.484 8.743 0.859  0.006
2489500 52 49525 24690  1.715 10.07 0.468  0.051
7375800 35 5890 6377 3.152 8.231 0.958  0.305
7375307 25 5511 5428 2.031 8.110 1.089 -0.159
8014800 24 5162 3834 2.166 8.283 0.782 -0.435
7368000 63 1900 747 0.610 7.458 0470 -1.573
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Proposed Estimation Method

minimized. Practically, there are four types of combined methods. Lety, S, and G, be the
estimated values of fys 0y and v, by MOM, respectively, and let a, 6, and ¢ be the estimated
values of the Lp3 distribution parameters a, b, and ¢ by MOM, respectively. The four
combinations of MOM and least squares are:

(1) Estimate p, and 0y by MOM and , by the least Square method (LSM), where
the coefficient of skewness estimated by MOM serves as an initial value for
an optimal solution by LSM.

2 Estimate #y by MOM, and 0y and v, by LSM, where S, and G, serve as initial
values for LSM.

(3) Estimate Ky, 0y and vy, by LSM where ?, S, and G, obtained by MOM serve
as initial values of LSM.

(4)  Estimate a, b, and ¢ by LSM where 4, b and ¢, estimated by MOM using
Equations (5) through (7), serve as the initial values for 1.§M.

Since evaluation of an estimator for an observed data set is normally made in terms of the
relative root average square error (RRASE) and the relative average bias (RAB) defined in
Equations (10) and (11), or in terms of root average squares error (RASE, Equation 25B)
and the average bias (ABIAS, Equation 25C), the objective function for LSM should be the
RRASE, RAB, RASE, ABIAS, or a combination of them. In this study, five objective
functions in terms of RRASE, RAB, RASE, and ABJAS were investigated. The five

objective functions were:
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A total of 20 alternative methods are possible by combining the above four combinations of
MOM and LSM and five objective functions. Table 5 lists these 20 alternatives. The
conjugate gradient optimization (CGO) algorithm was employed to find the solution for the
-least squares method. The CGO algorithm has been described in many optimization
textbooks /33] [34]. Appendix A gives a detailed description of the CGO algorithm. The
- MOM estimate(s) is used as a starting point for the CGO search. The estimated quantile for

a given cumulative probability, F, computed by a selected plotting-position formula, can be
calculated as:

Xp = ezxp(§y + KSy) (26)

‘where K is the frequency factor which is approximated /32 by:
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| K:t+(t2~1)%+1(t3~6t)[%]

ea(3)'(%) 38"

in which t is the standard normal variate and can be calculated [32] as:

4]

f

C+C,w+Cw?
w-—0" 71 2 , F<0.5
I+d1w+d2w2+d3w3
t= (28)
Cy + Crw +Cow?
~w s , F>05
1+d1w+d2w2+d3w3

where F is the exceedance probability. Note that the last term on the right-hand side of

Equation (27) has a negative sign which is a correction of the original equation given by Kite

[32].

( 2] e

2
w={" \F (29)

J In Ij—_l—--] =05 )
L C1-F> ?

The coefficients in Equation (28) are given by Kite /32 as:

C, = 2.515517 d, = 1.432788
C, = 0.802853 d, = 0.189269
C, = 0.010328 dy = 0.001308

Development of the MALS Method

The values of RMSE and BIAS for seven selected quantiles at the return periods of 2, 5, 10,
25, 50, 100, and 200 years were computed from each of the 20 alternative methods by using
the 90 sets of Monte Carlo simulated data, Tables 6 and 7 give examples of the computed

results for the sample sizes of 40 and 100, The Population quantiles were generated by using
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the population parameters. The estimated quantiles were generated using the parameters
estin;ated by each of ‘t-!;e alternative methods. The values of RMSE and BIAS are the average
values for the 10 generated LP3 samples of size of 40 or 100 for each of the seven selected
quantiles. As a result, for all of the nine sample sizes, the MALS4, which estimates the Iy
and o, by MOM and v, by LSM, using the objective function "25D", gave the smallest
RMSE and BIAS. Therefore, this method, MALS4, was selected as the best representative
- method and is hereafter referred to as the MALS method. |

The performances of the MALS method for the 90 Monte Carlo simulated samples were
further compared with those of MOM, MLE, and MME in terms of standard root mean
square error (RMSE) and standard bias (BIAS) using the seven selected quantiles. The
.computed RMSE and BIAS are the average values for ten samples of each of the nine
selected samples sizes. Table 8 shows the RMSE values for the seven selected quantiles and
the nine sample sizes of 15, 20, 25, 30, 40, 60, 80, 100, and 500. On the average;- the
RMSE values for the seven quantiles and the nine sample sizes for MLE, MME, MALS and
... MOM were 0.1193, 0.1227, 0.1354 and 0.1568, respectively. The MLE performed the best.
The RMSE of MALS was 13.6 percent smaller than that of MOM. Table 9 lists the BIAS
for the seven selected quantiles and the nine sample sizes. On the average, for the
seven quantiles and the nine sample sizes, the BIAS values for MALS, MOM, MLE and
MME were 0.0233, 0.0349, 0.0566, and 0.0625, respectively. The MALS method gave the
-smallest BIAS. It reduced the BIAS by 33 percent as compared with MOM, 59 percent as
.compared with MLE, and 63 percent as compared with MME. Although MLE and MME
are the two best methods in terms of the RMSE test, they tend to under-estimate the
quantiles for large return periods (larger than or equal to 50 years). This is shown in Table
9 in which the larger the return period, the larger is the negative RAB for MLE and MME.
‘The MALS method, on the other hand, normally reduces the BIAS by more than 50 percent
for large return quantiles as compared with MLE and MME. As compared with MOM,

age 25 LTRC ——




MALS yields larger reductions both in RMSE and in BIAS for predicting flood quantiles of

larger return periods.

Te;ting the MALS Method by the Observed Flood Data

To test the MALS method, first, the 90 sets of observed annual maximum flood data in
Louisiana were used. The computed relative root average square error (RRASE) for the 90
data sets are given in Table 10. On the average, the RRASE values for the observed data
sets for MOM, MLE, MME and MALS were 0.1699, 0.2080, 0.2083, and 0.1469,
respectively. The MALS was found to be the best method and the MLE the worst. The
MALS reduced the RRASE by 13.5 percent as compared with MOM, 29.5 percent as
compared with MLE, and 29.4 percent as compared with MME. The relative average bias
(RAB) for the 90 data sets is shown in Table 11. On the average, the RAB values were
0.0149, 0.0242, 0.0258, and 0.0275, respectively, for MALS, MLE, MME and MOM. The
MALS method reduced the RAB by 45.8 percent as compared with MOM, 38.4 percent as
compared with MLE, and 42.2 percent as compared with MME.

Extended Test for MALS by Monte Carlo Simulation

To further test the MALS method, 600 additional sets of Monte Carlo simulated LP3 data
for sample sizes of 20, 30, 40, 60, 100, and 500 were generated, i.e., one hundred samples
were generated for each sample size. Performance indices of RMSE and BIAS for the
methods of MOM, MLE, MME, and MALS were computed and compared. Again, seven
selected quantiles corresponding to the return periods of 2, 5, 10, 25, 50, 100, and 200 years
were used for the comparison. Table 12 shows the computed RMSE values for the seven
selected quantiles and six sample sizes. On the average, The RMSE for the seven quantiles
and six sample sizes for MOM, MLE, MME, and MALS are 0.194, 0.162, 0.148, and
0.179, respectively. Again, MLE performed the best in terms of RMSE, The RMSE of
MALS was eight percent smaller than that of MOM. Table 13 lists the BIAS for
seven selected quantiles and six sample sizes. On the average, for the seven quantiles and
nine sample sizes, the BIAS values for MOM, MLE, MME, and MALS were 0.015 , -0.069,
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0. 048 and 0.008, respectwely The MALS performed the best and the MLE the worst.
'he MALS reduced the BIAS by 47 percent as compared thh MOM, 88 percent as
‘Qmpared with MLE, and 83 percent as compared with MME.

To clearly show the relative average performances of the four methods for the six
ample sizes, MALS was compared with MOM, MLE, and MME for prediction of the seven
uantiles. Table 14 shows the computed results, where the compared values were computed
y {RMSE(MALS)-RMSE(XXX)}/RMSE(XXX) for the RMSE and {|BIAS(MALS)|-
BIAS(XXX)|}/|BIAS(XXX)| for the BIAS, in which XXX=MOM, MLE, and MME
espectively. From Table 14, one can see that for the return periods 50, 100, and 200 years,
'MALS reduced RMSE by 7, 11, and 15 percent, and reduced BIAS by 71, 71, and 60
percent respectively as compared with MOM. Therefore, the MALS predicts flood quantiles
more accurately for larger return period. Although MLE and MME performed better than
MALS in terms of RMSE, MALS reduced the BIAS by at least 90 percent for predicting
.quantiles at larger return periods as compared with MLE and MME. Table 13 shows that
MLE and MME under-estimates the flood quantiles for larger return periods (say larger or
-equal to 50 years) which is shown by the larger negative BIAS values. Moreover, when
sample size gets larger, RMSE and BIAS becomes smaller for both MOM and MALS. This
is not true for MLE and MME. The reason for this is that for certain samples, MLE and
MME cannot yield a solution /6]. Two other advantages of the MALS method are: (1) when
different skew correction factors are used, MALS always yields the same RMSE and BIAS,
but MOM does not; (2) for large sample sizes (say 500), MALS produces nearly the same
RMSE and BIAS regardless of the number of samples used, but the RMSE computed from
MOM is largely influenced by the number of samples used.
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Predicted Quanti{es for the 90 Louisiana Stations
Quantiles for thé return periods 2, 5, 10, 25, 50, 100, and 200 years are computed using the
MALS method and the MOM, and are listed in Tables 15 and ‘16 Tespectively for all of the
30 I:ouisiana stations. Since the MALS method has been shown to perform signiﬁcantly _
better than the MOM for estimating parameters of the LP3 distribution, it is expected that -
the predicted quantiles by using the MALS method are more accurate,

Three statistical tests were conducted to examine the predicted quantiles by the MALS and
the MOM for the return periods of 25, 50, and 100 years for the 90 gauge stations. These
three tests are; (1) the t-test, to test whether the population means given by the two methods
are significantly different; (2) the F-test, to test whether variances given by the two methods
are significantly different; and (3) the Kolmogorov-Smirnov (K-S) test, to test whether the
quantiles predicted by the two methods are significantly different. The principles and
computational procedures for the above three tests have been described by Press, et al, (33),
At the 0.01 significant level, all of the three tests showed that no significant difference in
population mean, variance, and predicted 1.P3 Quantiles by the two methods, This is no
surprise because the MALS does not completely change the MOM-estimated parameters of
the LP3 distribution. In fact, the MALS keeps the same estimated mean and variance as
those estimated by MOM but improves the coefficient of skewness using the optimization
method.

Summary of the MALS Method

conclusions are drawn:
(1)  The MALS method yielded the smallest BIAS or RAB for both types of data
as compared with MOM, MLE, and MME.
(2)  The MALS method reduced the RMSE by 13.6 percent for the 90 Monte
Carlo simulated data and by 8 percent for the 600 samples, and reduced the
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€)

4)

©)

RRASE by 13.5 percent for the 90 observed flood data as compared with
MOM.

The MALS method reduced BIAS by 33 percent for the 90 Monte Carlo
simulated data and by 47 percent for the 600 samples, and reduced RAB by
46 percent for the 90 sets of observed flood data, as compared with MOM.
MLE and MME gave approximately the same accuracy in quantile prediction.
They were the two best estimators for 690 Monte Carlo simulated data in
terms of RMSE, but the two worst estimators for both the 90 observed flood
data and the 690 Monte Carlo simulated samples in terms of RRASE, RAB
and BIAS respectively.

For the data used, the MALS method always performed better than MOM
regardless of what the performance index was used. For all tests and
methods, MALS yielded the best performance for predicting flood quantiles
for return periods 50, 100, and 200 years. Thus, the MALS method can be
considered as a potential candidate to replace MOM for estimating parameters
of the LP3 distribution.
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. Table.

5. Twenty Alternative Combination Methods

Parameter Estimated b ; et
Moo I o | toy | Chmine | Objstive
MALS1 | (u, o) (1) G, 25A
MALS2 | (4, o,) (v,) (G,) 25B
MALS3 s Ty) (r) (G,) 25C
MALS4 | (4, o)) (vy) (G,) 25D*
MALSS | (u, g, (v,) (G,) 25E
MALS6 (uy) (o, 7¥,) (S,, G,) 25A
MALS7 (i) (o, 7,) @s,, G) 25B
MALSS () (0, 7,) S,, G,) 25C
MALS9 (&) (0,, 7,) S,, G) 25D
MALSI10 (1) (0, 7,) (S,, G,) 25E
MALSI11 y, 9, 1) | (7, 8,,G) 25A
MALS12 > o 1) | (v, S,, G) 25B
MALSI13 Wy 9 7)) | (3,8,, G) 25C
MALS14 1y 0, 1) | (3, S,, G,) 25D
MALS15 Wy 9 1) | (3, S,, G) 25E
MALS16 (a, b, ¢ @, b, &) 25A
MALS17 (a, b, ¢ @, b, &) 25B
MALS18 (2, b, ¢) @, b, ¢ 25C
MALS19 {3, b, ¢ @, b, & 25D
MALS20 @a, b, ¢ @, b, & 25E

*Finally selected method.
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Table 6. Average Standard RMSE and BIAS for 20 Combination Methods Using 10
Samples of Size 40

Method Return Period (Year)
2 5 10 25 50 100 200

RMSEL 0.047 0.072 0.112 0.185  0.251 0.328 0.415
BIAS1 0.013 0.028 0.047 0.081 0.112 0.149 0.192
RMSE2 0.047 0.072 0.112 0.188  0.258 0.340  0.433
BIAS?2 0.010 0.026 0.048 0.086 0.122 0.164 0.214
RMSE3 0.099 0.092 0.111 0.173  0.230  0.286  0.340
BIAS3 0.092 0.060 0.009 -0.065 -0.120 -0.174 -0.224
RMSEA4 0.056 0.083 0.109 0.149 0.181 0.212  0.242
BIAS4 0.038 0.044 0.041 0.033 0.026 0.020 0.013
RMSES 0.053 0.080 0.111 0.160 0.199 0.238 0.278
BIASS 0.034 0.041 0.042 0.042 0.043 0.044  0.047
RMSE6 0.056 0.120 0.170 0.240 0.297 0.357 0.420
BIAS6 0.036 0.089 0.114 0.140 0.157 0.173  0.192
RMSE7 0.062 0.121 0.164 0.226 0.278 0.333  0.392
BIAS7 0.036 0.083 0.105 0.128 0.143  0.159 0.176
RMSES8 0.050 0.117 0.173  0.253 0.316 0.382  0.452
BIASS 0.030 0.086 0.117 0.153 0.180 0.207 0.235
RMSES 0.052 0.103 0.144 0.203 0.249 0.298  0.348
BIASS 0.035 0.072 0.089 0.106 0.117 0.129 0.140
RMSEI0  0.050 0.100 0.148 0.218 0.275 0.335 0.398
BIAS10 0.029 0.070 0.092 0.120 0.141  0.163  0.187
RMSE1l  0.060 0.110 0.154 0218 0.270 0.325  0.382
BIAS11 0.043 0.079 0.097 0.118 0.133  0.149  0.166
RMSEI2Z  0.060 0.121 0.164 0.226 0.279 0.336  0.396
BIAS12 0.039 0.084 0.105 0.128 0.144 0.161 0.179
RMSE13  0.068 0.105 0.141 0.195 0.239 0.285 0.332
BIASI13 0.055 0.07t 0.077 0.084 0.089 0.095 0.102
RMSEI4  0.053 0.104 0.152 0.219 0.272 0.327 0.385
BIAS14 0.036 0.067 0.082 0.101 0.115 0.129 0.145
RMSEL5  0.051 0.103 0.153  0.224 0.283  0.344  0.409
BIAS15 0.030 0.071 0.093 0.122 0.144 0.167 0.192
RMSEI6 0.070 0.105 0.139 0.192 0.235 0.279 0.325
BIAS16 0.056 0.069 0.073 0.077 0.080 0.085 0.090
RMSE17  0.081 0.121 0.159 0.216 0.264 0313 0.364
BIAS17 0.069 0.087 0.095 0.103 0.110 0.118 0.127
RMSEI8 0.070 0.105 0.139 0.192 0.235 0.279 0.325
BIAS18 0.056 0.066 0.073 0.075 0.081 0.085 0.09
RMSEI9  0.054 0.085 0.118 0.168 0.208 0.250 0.292
BIAS19 0.037 0.045 0.046 0.047 0.048 0.050 0.053
RMSE20  0.051 0.100 0.147 0.214 0.267 0.323  0.380
BIAS20 0.033 0.056 0.066 0.079 0.090 0.101 0.114
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Table 7. Average Standard RMSE and BIAS for 20 Combination Methods Using 10
Samples of Size 100

- Method Return Period (Year)

2 5 10 25 50 100 200
RMSE] 0.086 0.092 0.082 0.110 0.188  0.320 0.516
BIAS!1 -0.009 -0.005 0.017 0.062 0.112 0.180 0.272
RMSE2 0.067 0.109  0.105 0.118 0.214 0.435 0.868
BIAS2 -0.010 -0.017  0.008 0.068 0.142  0.256 0.441
RMSE3 0.115 0.197 0.126 0.196  0.566 1.195 2.255
BIAS3 -0.104 -0.187 -0.101 0.172 0.546 1.158 2.172
RMSE4 0.088 0.080 0.065 0.057 0.073 0.108 0.155
BIAS4 0.021 0.021 0.018 0.013 0.010 0.009 0.010
RMSES 0.089 0.080 0.066 0.058 0.076  0.113 0.162
BIASS 0.020 0.020 0.018 0.016 0.016 0.017 0.021
RMSES6 0.064 0.086 0.105 0.140 0.175 0.214 0.257
BIAS6E 0.041 0.072  0.083 0.093 0.098 0.104 0.110
RMSE7 0.087 0.084 0.074 0.118 0.204 0.332 0.510
BIAS7 -0.001 0.017 0.038 0.080 0.123  0.181 0.258
RMSES 0.088 0.088 0.086 0.110 0.156 0.224 0.316
BIASS 0.015 0.043  0.059 0.080  0.098 0.119 0.146
RMSE9 0.089 0.084 0.073 0.072 0.094 0.135 0.191
BIASYO 0.019 0.033  0.038 0.044 0.049 0.056 0.066

RMSEI1( 0.088 0.08 0.073 0.075 0.102 0.148  0.209 -
BIASI10 0.017 0.032  0.039 0.048 0.056 0.067 0.080
RMSEI11 0.093 0.088 0.089 0.127 0.190 0.280  0.400
BIAS11 0.014 0.042  0.059 0.083 0.106 0.133 0.169
RMSEI2 0.085 0.084 0.075 0.119 0.202 0.331 0.509
BIASI2 0.006 0023 0.040 0.080 0.122 0.180 0.257
RMSE13 0.087 0.083 0.074 0.080 0.110 0.159 0.225
BIAS13 0.030 0.037 0.040 0.044 0.050 0.058 0.070
RMSE14 0.086 0.083 0.075 0.080 0.108 0.157 0.223
BIAS14 0.019 0.034 0.041 0.051 0.060 0.071 0.085
RMSEI1S 0.088 0.083 0.072 0.076 0.104 0.150 0.213
BIAS15 0.018 0.032 0.03% 0.048 0.056 0.067 0.080
RMSEI16 0.090 0.082 0.072 0.081 0.115 0.170 0.243
BIAS16 0.031 0.036 0.038 0.042 0.048 0.057 0.070
RMSE17 0.109 0.106 0.091 0.103 0.167 0.277 0.439
BIAS17 0.038 0.044  0.050 0.064 0.082 0.110 0.152
RMSE18 0.089 0.083 0.073 0.078 0.109 0.15 0.226
BIAS18 0.032 0.036 0.037 0.041 0.045 0.053 0.064
RMSE19 0.085 0.079 0.067 0.065 0.089 0.132 0.191
BIAS19 0.020 0.022  0.021  0.022 0.024 0.029 0.037
RMSE20 0.086 0.077 0.065 0.068 0.100 0.151 0219
BIAS20 0.020 0.023 0.023 0.026 0.030 0.037 0.047
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Table 8. Average Standard RMSE for Seven Selected Quantiles Using 10 Samples for
- Each Sample Size

Method Return Period (Year)

N 2 5 10 25 50 100 200
MOM 15 0.185 0.180 0.205 0.286 0.375 0.487  0.629
MLE 15 0.123 0.159 0.183 0.211 0.230 0.250 0.269
MME 15 0.129 0.169 0.190 0.213 0.229 0.245 0.262
MALS 15 0.150 0.172 0.191 0.225 0.256 0.289 0.324
MOM 20 0.182 0.161 0.142 0.164 0.218 0.292 0.385
MLE 20 0.133 0.135 0.137 0.145 0.158 0.175 0.195
MME 20 0.138 0.141 0.139 0.144 0.156 0.174 0.197
MALS 20 0.156 0.142 0.141 0.156 0.213 0.281 0.347
MOM 25 0.149 0.152 0.149 0.167 0.200 0.247 0.306
MLE 25 J0.115 0.132  0.144 0.165 0.183 0.203 0.224
MME 25 0.121 0.135 0.143 0.161 0.181 0.204 0.229
MALS 25 0.130 0.139 0.146 0.167 0.191 0.219 0.251
MOM 30 0.066 0.048 0.067 0.126 0.181 0.241 0.305
MLE 30 0.062 0.051 0.044 0.051 0.071 0.094 0.120
MME 30 0.071 0.062 0.053 0.064 0.089 0.120 0.153
MALS 30 0.066 0.052 0.065 0.110 0.152 0.199 0.248
MOM 40 0.052 0.080 0.112 0.160 0.199 0.238 0.279
MLE 40 0.072 0.085 0.090 0.102 0.117 0.136  0.158 -
MME 40 0.077 0.094 0.098 0.112 0.130 0.154 0.181
MALS 40 0.056 0.083 0.109 0.149 0.181 0.212 0.244
MOM 60 0.047 0.054 0.064 0.089 0.115 0.145 0.178
MLE 60 0.067 0.060 0.046 0.041 0.056 0.080 0.108
MME 60 0.076 0.069 0.081 0.051 0.074 0.107  0.143
MALS 60 0.049 0.055 0.063 0.086 0.110 0.140 0.173
MOM 80 0.063 0.064 0.067 0.085 0.109 0.135 0.187
MLE 80 0.077 0.068 0.055 0.056 0.074 0.101 0.131
MME 80 0.081 0.074 0.060 0.061 0.082 0.113 0.147
MAIS 80 0.066 0.070 0.066 0.079 0.097 0.119 0.143

MOM 100 0.087 0.080 0.067 0.064 0.084 0.123 0.173
MLE 160 0.074 0.070 0.073  0.093 0.117 0.145 0.175
MME 100 0.084 0.074 0.065 0.091 0.102 0.134 0.169
MALS 100 0.088 0.080 0.065 0.057 0.073 0.108  0.155
MOM 500 0.021 0.020 0.037 0.053 0.066 0.081 0.096
MLE 500 0.033 0.033 0069 0120 0.158 0.194 0.228
MME 500 0.043 0.034 0.039 0.076 0.112 0.150 0.188
MALS 500 0.022 0.030 0.037 0.048 0.059 0.070 0.083

AVG:
MOM; 0.095 0.094 0.101 0.133 0.172 0.221  0.282
MLE: 0.084 0.088 0.093 0.109 0.129 0. 153 0.179
MME: 0.091 0.095 0.097 0.108 0.128 0.156 0.185
MALS: 0.087 0.091 0.098 0.122 0.149 0.182 0.219
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Table 9, Average Sféndard BIAS for Seven Selected Quantiles Using 10 Samples for

o . Each Sample Size
Method Return Period (Year) o
N . 2 5 10 25 50 100 200

MOM 15 0.035 0.023  0.031 0.065 0.110 o 173 0.257
MLE 15 0.055 0.042  0.021 -0.013  -0.040 -0.067  -0.095
MME 15 0.062 0.063  0.044 0.010 -0.020 -0.051  -0.084
MALS 15 0.053 0.054  0.044 0.030  0.020 0.012 0.007
MOM 20 0.074 0.049  0.024 -0.003  -0.014 -0.016  -0.008
MLE 20 0.070 0.050 0.023 -0.017  -0,049 -0.081  -0.114
MME 20 0.078 0.064  0.036 -0.009  -0,045 -0.082  .0.012
MALS 20 0.066 0.053  0.037 0.016  0.004 -0.003 0,007
MOM 25 0.045 0.027  0.012 -0.002  -0.008 -0.008  -0.002
MLE 25 0.055 0.032  0.004 -0.035  -0.066 -0.098  -0.129
MME 25 0.065 0.044  0.013 -0.035  -0.072 0.110  -0.148
MALS 25 0.048 0.034  0.018 -0.003  -0.018 -0.032  -0.044
MOM 30 0.030 0.034  0.034 0.035  0.038 0.044 0.053
MLE 30 0.047 0.035  0.014 -0.018  -0.045 -0.072  -0.100
MME 30 _ g 058 0.048  0.022 -0.021  -0.057 -0.094 -0.131
MALS 30 0.036 0.038  0.033 0.024  0.017 0.012 0.008
MOM 40 0.034 0.042  0.042 0.042  0.041 0.043 0.042
MLE 40 0.053 0.043 0,021 -0.014  .0.044 -0.074  -0.104
MME 40 0.062 0.055  0.029 -0.013  -0.048 -0.085  .0.121
MALS 40 0.038 0.044  0.041 0.033  0.026 0.020 0.013
MOM  6p 0.039 0.044  0.042 0.038  0.034 0.030 0.027
MLE 60 0.057 0.048  0.026 -0.009  -0.037 -0.066  -0.095
MME 60 0.069 0.057  0.052 -0.017  -0.055 -0.093  -0.132
MALS 60 0.041 0.045  0.041 0.034  0.027 0.021 0.016
MOM g0 0.040 0.044  0.040 0.032  0.026 0.019 0.039
MLE 80 0.060 0.048 0.024 -0.016  -0.048 -0.081  -0.114
MME 80 0.067 0.056 0.029 -0.016  -0.053 -0.091  -0.129
MALS 80 0.043 0.052  0.039 0.028  0.018 0.007  -0.003
MOM 10 0.018 0.020  0.019 0.019  0.020 0.031 0.027
MLE 100 0.039 0.026  0.005 -0.027  -0.054 -0.080  -0.106
MME 100 0.051 0.036 0.006 -0.030  -0.078 -0.117  -0.155
MALS 100 . 021 0.021  0.018 0.013  0.010 0.009 0.010
MOM 500 o, 005 0.003  0.002 0.001  0.001 0.000 0.000
MLE 300 0.027 -0.018  -0.053 -0.097  -0.129 -0.158  .0.187
MME 500 o 040 0.018 -0.014 -0.063  -0.102 -0.141 0,180
MALS 500 0.006 0.004  0.001 -0.001  -0.003 -0.005  -0.006

AVG:
MOM: 0.035 0.032 0.027 0.026 0.032 0.041 0.051
MLE: 0.051 0.038 0.021 0.027 0.057 0.086 0.116

MME: 0.061  0.049 0.027  0.024 0.059  0.096 0.121

MALS: 0.039  0.038 0.030  0.020 0.016  0.014 0.013
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STATION
NUMBER

2492000
2492360
2490105
7378500
7375222
7380160
7375170
7376000
7376500
7375500
7377300
7376600

7375000
2491500
2491700
2491350
7377000
7375800
7375307
7378000
7377500
7373500
7369500
7370000
7386500
7364500
7386500
8012000
8010000
8015500
8011800
8013500
2014500
8014000
8014200
8013000
7382000
7381800
7373000
7353500
7372500
7372200
7370750
7372110
7372000
7370500

7375480

MOM

0.1315
0.1126
0.1233
0.0938
0.1648
0.1124
0.1290
0.1102
0.0767
0.0997
0.1037
0.0844
0.2536
0.1250
0.1310
0.5235
0.1745
0.1505
0.1194
0.1983
0.1044
0.1427
0.1391
0.0455
0.0949
0.0769
0.2075
0.1873
0.1084
0.1646
0.1369
0.1644
0.1024
0.1492
0.1463
0.1546
0.1521
0.1641
0.1390
0.2014
0.2501
0.1804
0.1435
0.0949
0.1967
0.2205
0.3132

MLE

0.1458
0.1214
0.1358
0.1121
0.2351
0.1265
0.1454
0.1383
0.0854
0.1233
0.1085
0.1370
0.2568
0.1578
0.1765
0.5093
0.1832
0.1909
0.1281
0.2168
0.1608
0.1759
0.1581
0.0787
0.1259
0.0969
0.3101
0.2554
0.1239
0.2480
0.1441
0.2036
0.1200
0.1563
0.1505
0.1702
0.2028
0.1841
0.1682
0.2125
0.2689
0.1874
0.1976
0.1105
0.2480
0.3930
0.5118

MALS

0.1084
0.1090
0.1133
0.0761
0.1502
0.1105
0.1320
0.0863
0.0612
0.0769
0.1030
0.0637
0.2450
(0.1043
0.1019
0.4680
0.1720
0.1328
0.1143
0.1502
0.0796
0.1365
0.1324
0.0340
0.0786
0.0654
0.1645
0.1534
0.1009
0.1182
0.1161
0.1476
0.0815
0.1231
0.1385
0.1277
0.1271
0.1319
0.1149
0.1981
0.2376
0.1599
0.1092
0.0887
0.2011
0.1511
0.2277
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ble 14. Average Relative Improvement of RMSE and BIAS by MALS over MOM,
" MLE, and MME for Six Sample Sizes

{RMSE(MALS)-RMSE(XXX)}/RMSE(XXX)
Compared | where XXX =MOM, MLE, and MME Respectively, for the Quantiles
‘Method at the Following Return Periods:

2-YR 5-YR 10-YR 25-YR 50-YR 100-YR [ 200-YR

MOM 0.000 | 0.022 | 0.000 -0.040 -0.066 -0.109 -0.151
MLE -0.085 | -0.078 | -0.048 0.031 0.104 0.186 0.279
MME -0.096 | -0.055 | 0.034 0.160 0.247 0.330 0.427

{| BIAS(MALS)|-| BIAS(XXX) | }/ | BIAS(XXX) I
Compared | where XXX=MOM, MLE, and MME Respectively, for the Quantiles
Method at the Following Return Periods:

YR | 5YR | 100YR |25-YR |50-YR | 100-YR | 200-YR

MOM 0.030 | 0.333 | 0.250 -0.571 -0.714 -0.708 -0.600
MLE -0.629 | 1.667 | -0.828 -0.959 -0.963 -0.950 -0.908
MME -0.667 | -0.636 | 0.000 -0.936 -0.951 -0.939 -0.893
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Table 15. Predicted Quantiles for 90 Louisiana Stations Using Log-Pearson Type 3
Distribution With MALS Estimation Method

. Return Period (year)
Station 2 5 10 25 50 100 200

2492000 20224 37999 52343 73109 90358 109034 129208
2492360 3984 10190 13639 18797 23253 28263 33895
2490105 2147 4320 6341 9677 12813 16579 21078
7378500 27692 49640 66720 90821 110400 131249 153437
7375222 2367 3853 4736 3708 6331 6876 7356
7380160 1077 1647 2036 2531 2900 3269 3639
7375170 3795 6427 3650 12071 15111 18611 22642
7376000 2449 10008 13506 18343 22190 26210 30404
7376500 3155 5056 6461 8381 9909 11514 13206
7375500 13541 26082 36275 51067 63354 76642 90969
7377300 24594 40994 54543 75009 928381 113176 136229
7376600 1365 1823 2046 2259 2379 2475 2552
7375480 5734 12792 19855 32258 44546 59923 79023
7375000 4222 9225 13631 20387 26246 32778 40009
2491500 22062 39527 51937 67904 79761 91459 103002
2491700 2612 7134 11801 19845 27512 36687 47506
2491350 2050 4422 6857 11265 15777 21598 29060
7377000 20931 42052 58769 82135 100767 120179 140324
7375800 3610 8292 13109 21744 30448 41492 35386
7375307 3294 8293 13518 22855 32158 43787 58157
7378000 11530 18018 21865 26130 28920 31389 33594
7377500 7043 13130 17765 24101 29080 34222 39526
7373500 6307 10971 14505 19382 23275 27363 31657
7369500 2768 3463 3810 4156 4363 4536 4684
7370000 5286 7281 8410 9648 10452 11171 11821
7386500 1075 1413 1602 1807 1940 2060 2168
7364500 7535 9407 9948 10236 10309 10329 10330
7386500 1236 1685 1876 2033 2108 2159 2193
8012000 7329 12054 16012 22341 28188 35164 43496
3010000 5096 7261 8298 9254 9770 10161 10458
8015500 27826 49016 65415 88477 107198 127134 148356
8011800 2367 4279 3641 7395 8698 9983 11251
8013500 14904 26093 34511 46039 55162 64671 74585
8014500 11664 24000 34777 51337 65944 82377 100827
3014000 4093 8044 11784 18099 24178 31637 40755
8014200 3721 7536 10774 15635 19792 24389 29449
8013000 14275 25964 34087 44264 51614 58688 65497
7382000 1370 2482 3725 6226 9101 13246 19234
7381800 2185 4242 5903 8296 10266 12380 14642
7373000 2797 7308 12170 21082 30156 41699 56193
7353500 1575 4621 8140 14920 22093 31473 43541
7372500 3223 6054 8865 13882 18992 25597 34114
7372200 20809 41362 57124 78501 93058 111894 128955
7370750 1909 3514 4977 7378 9635 12356 15630
7372110 1948 5086 8989 17411 27515 42416 64175
7372000 8456 14498 17577 20402 21878 22945 23706
7370500 5422 10318 13009 15589 16983 18014 18766
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Table 15. Predicted Quantiles for 90 Louisiana Stations
sing Log-Pearson Type 3 Distribution With MALS Estimation Method(Cont’d)

o]

Return Period (year)

Station 2 5 10 25 50 100 200

- 7371500 7074 13550 18101 23792 27869 31755 35452
© 7352000 2611 5318 7631 11123 14124 17457 21140
- 7366420 3119 7574 12437 21636 31369 44228 61052
£ 7365000 6094 11464 15501 20938 25143 29426 33782
7364870 2456 4714 6063 7480 8326 9012 9565
7365500 2485 5040 7826 13248 19236 27527 38973
- 7366000 5921 11705 16615 20425 30407 37519 45411
7366200 3691 7047 9441 12483 14700 16843 18913
- 7364700 2177 5065 8909 18045 30252 50265 83034
- 8031000 1398 2416 3198 4294 5182 6127 7132
- 8016800 3572 6237 8311 11250 13653 16231 18994
. 8030000 2174 3580 4598 3956 7009 3091 9205
- 8016400 3855 6812 9285 13036 16313 20025 24227
8016600 4041 6850 9294 13163 16695 20859 25767
- 8015000 5397 12598 19902 32749 45438 61240 80738
. 8028700 770 1231 1614 2197 2712 3302 3980
8029500 2214 4302 7877 14382 22152 33676 50709
- 8014600 1787 3635 5408 8429 11352 14953 19364
8028000 7619 19051 32179 58281 87240 127104 181427
8013800 1075 2001 2657 3493 4104 4697 5274
8025850 535 1048 1568 2509 3478 4740 6380
8025500 3567 8249 13808 25450 39148 59117 38058
7354000 2779 4194 5005 5883 6442 6930 7359
7353990 3318 7331 10883 16346 21092 26389 32257
8023000 1941 3686 5092 7119 8796 10604 12549
7351700 969 2028 2969 4437 5738 7219 8896
7352500 3778 6846 9524 13742 17557 22009 27192
7351500 5482 9222 10968 12432 13119 13567 13849
7351000 3841 6554 7870 9013 9574 9955 10207
7344450 2828 5934 8711 13074 16965 21421 26492
2490000 1534 3947 6174 9615 12571 15812 19321
7348700 6840 13800 19659 28385 35791 43931 32836
7349500 4545 7854 10116 12938 14978 16950 18858

7348725 1966 3283 3827 4221 4374 4455 4492
7348800 1849 3704 3338 7839 10161 12765 15734
7347000 1392 2015 2479 3127 3654 4222 4835
7373550 221 309 361 419 458 494 527
7364190 4923 6292 6755 7055 7161 7211 7231

7365800 4041 9795 15725 26247 36695 49742 65867
7362100 6336 12956 18726 27608 35388 44169 54028
2489500 44283 65807 81129 101567 117528 134090 151356
8014800 4002 7662 10691 15174 18974 23155 27741
7368000 1942 2544 2783 2968 3051 3104 3136
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Table 16. Predicted Quantiles for 90 Louisiana Stations Using Log-Pearson Type 3
Distribution With MOM Estimation Method

- Return Period (year)
Station 2 5 10 25 50 100 200

2492000 20056 37926 32642 74380 92793 113063 135307
2492360 6141 10280 13431 17836 22406 25211 29269
2490105 2160 4331 6319 9554 12553 16110 20309
7378500 27738 49665 66637 90465 109747 130212 151918
7375222 2394 3854 4778 3540 6066 6507 6380
7380160 1098 1652 2003 2422 2716 2995 3261
7375170 3737 6383 8703 12404 15804 19829 24591
7376000 2455 10013 13494 18203 22098 26059 30183
7376500 3158 5057 6456 8363 9877 11465 13135
7375500 13487 26063 36375 51481 64144 77945 92937
7377300 24842 41177 54283 73563 89986 108244 128555
7376600 1377 1822 2026 2208 2305 2378 2434
7375480 6302 13111 18672 26640 33132 40005 47245 -
7375000 - 4226 9229 13619 20335 26142 32603 39741
2491500 21831 309522 52455 69557 82589 95716 108936
2491700 3105 7133 9891 13046 15063 16786 18245
2491350 2148 4510 6706 10303 13649 17620 22305
7377000 21115 42115 58327 80458 97703 115314 133242
7375800 3577 8264 13170 22122 31304 43131 58233
7375307 3424 8380 13165 21060 28341 36859 46715
7378000 11499 18047 21954 26315 29164 31699 33970
7377500 7050 13138 17750 24033 28951 34011 39213
7373500 6540 11030 14071 17855 20589 23230 25789
7369500 2762 3466 3821 4176 4390 4570 4723
7370000 3270 7286 8441 9718 10556 11311 11996 -
7386500 1087 1414 1584 1759 1866 1958 2037
7364500 7677 9291 9651 9813 9852 9868 9874
7386500 1274 1660 1786 1867 1897 1914 1923
8012000 7309 11825 16092 23388 30553 39546 50828
8010000 5100 7280 3310 9245 9742 10117 10401
8015500 27297 48760 66246 92068 114039 138366 165274
8011800 2439 4283 5476 6877 7829 8699 9496
8013500 14815 26065 34663 46626 56235 66377 77081
8014500 11337 23799 35405 54467 72233 93359 118339
8014000 4078 8036 11805 18212 24413 32061 41447
8014200 3655 7503 10907 16232 20969 26389 32551
8013000 14284 25997 34098 44196 51446 58389 65030
7382000 1259 2231 3569 6799 11196 18552 30892
7381800 2204 4250 5862 8129 9956 11879 13899
7373000 2862 7359 11987 20085 27971 37620 49276
7353500 1665 4685 7828 13261 18437 24616 31882
7372500 2953 3645 8864 15714 23966 36310 54742
7372200 20910 41413 56902 77593 93386 109229 125086
7370750 1848 3455 5031 7808 10598 14159 18687
7372110 1502 5024 9057 18111 29386 46557 72436
7372000 8487 14562 17580 20282 21667 22663 23379
7370500 3530 10299 12703 14821 15877 16614 17129
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e Flood Frequency Analysis

Table 16. Predicted Quantiles for 90 Louisiana Stations
Using Log-Pearson Type 3 Distribution With MOM Estimation Method(Cont’d)

Return Period (year)

Station 2 5 10 25 50 100 200

S 7371500 6973 13571 18387 24625 29247 33776 38199
7352000 2768 5822 7879 10264 11827 13197 14394
7366420 3121 7581 12437 21599 31269 44015 60649
©7365000 6147 11480 15386 20516 24390 28254 32106
. 7364870 2558 4668 5741 6702 7190 7538 7785
7365500 2363 4859 7853 14247 21951 33451 50564
7366000 5738 11594 16920 25605 33601 43045 54147
366200 3517 7027 9872 13955 17301 20869 24660
7364700 2003 4664 8743 19931 37056 68773 127454
8031000 1399 2417 3195 4285 5163 6097 7089
-8016800 3501 6200 8417 11722 14562 17734 21274
8030000 2179 3582 4589 5922 6949 7997 9071
016400 3823 6791 9325 13244 16732 20748 25365
8016600 4054 6866 9287 13084 16517 20529 25216
8015000 5509 12686 19659 31408 42547 55934 71877
8028700 739 1201 1630 2350 3045 3907 4972
8029500 2197 4796 7915 14549 22488 31247 51573
8014600 1818 3662 3364 8154 10757 13862 17548
8028000 7667 19131 32119 57386 85437 123289 174174
8013800 1101 2002 2594 3293 3768 4203 4600
8025850 500 1001 1580 2777 4173 6201 9138
8025500 3486 8145 13888 26362 41536 64284 98144
7354000 2818 4192 4927 5672 6116 6483 6789
7353990 3368 7352 10754 15807 20051 24653 29611
8023000 1985 3701 3003 6776 8166 9596 11067
7351700 890 1963 3101 3227 7464 10419 14295
7352500 3808 6871 9486 13524 17109 21223 25937
7351500 5437 9331 11204 12826 13628 14186 14576
7351000 3811 6624 8025 9274 9911 10367 10692
7344450 2780 3904 8805 13540 17923 23101 29181
© 2490000 1703 3936 3528 7432 8706 9836 10831
7348700 6880 13820 19569 28011 35078 42754 31058
17349500 4524 7858 10166 13076 15201 17271 19289
- 1348725 2074 3265 3481 3649 3697 3720 3730
7348800 1861 3711 5316 7789 9963 12427 15206
- 7347000 1386 2016 2486 3139 3672 4244 4861
7373550 223 309 356 408 440 469 493
7364190 4932 6253 6678 6949 7049 7105 7135
17365800 3749 9484 16274 30213 46151 68675 100173
7362100 6264 12918 18868 28266 36710 46444 57601
12489500 44266 65802 81139 101625 117649 134297 151661
8014800 4184 7722 10316 13740 16339 18947 21562
7368000 1950 2549 2775 2045 3019 3066 3097
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lood Frequency Analysis

CHAPTER 5 -
REGIONAL FLOOD FREQUENCY ANALYSIS

duction
te flood frequency analysis consists of fitting preselected probability distributions to
rved data at an individual gauge station or site and then estimating the quantiles for some

en‘exceedance probabilities. These predicted quantiles can be used to design various types

ion may result in unreliable estimates because the length of records at a single station is

tively short when compared to the recurrence intervals, which are to be estimated from

rors and the underlying distributions for the observed data are rarely known. Over the

s, researchers have been striving to search for a robust probability distribution and a

istribution by the Monte Carlo simulation, it is highly possible that the estimator found is
ot superior for the observed data.

-On the other hand, regional frequency analysis consists of fitting preselected probability
distributions by using data from a group of stations with similar hydrological conditions.
Therefore, regionalization techniques have the advantage of reducing the uncertainty inherent
in an individual station with short records. Other advantages of regionalization techniques
are the ease of the use of regional quantiles for design purposes as well as their applicability
to sites where flood records are not available.

LTRC ——




B S

{12]. Greis and Wood {8] recommended an indexing method similar to that of Dalrymplé:
f10], but with the generalized extreme value (GEV) as the base distribution and probabﬂity_i
weighted moments (PWM) as the parameter estimation method, This parameter estimatioy’
method, first proposed by Greenwood, et al. {13], has been shown to possess very attractive
asymptotic characteristics when used to estimate the parameters of severa] distributions, '.
especially in cases where the samples exhibit wide variability f74]. In support of this, Potter-
and Lettenmaier /757 tested ten commonly used frequency methods and found that the GEy

index method possessed predictive characteristics superior to the other methods tested.

Although most parameter estimation methods are based o Some statistical principles such

as maximum likelihood, maximum entropy, principle of moments, and least squares of €rror,

(RRASE) and the relative average bias (RAB) are examples of performance indices that are
frequently used in flood frequency analysis. These two indices are defined for the regional
frequency analysis as:

m o on . . 2
R.RASE - min ZZ IC(:J) - %("J) (30)
i=1j=1 Zo(t7)
p - 1 VT [zc(m - xo(mJ 1)
e i:Zl _7; To(t7)

where x.(i,j) and X,(1,j) are the computed and the observed quantiles at the i-th site and the
j-th plotting position, m is the number of sites in the region, and n is the number of
observations at the i-th site. The optimal parameter set is obtained by minimizing both the
RRASE and the RAB for the data sets used. The objective function that performed the best

for the at-site analysis was also used for the regional analysis. This objective function is:
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Regional Flood Frequency Analysis

MIN z = RRASE+ | RAB1 . (32)

The objectives of this part of the study are:
(1) to develop an indexed regional optimization procedure to estimate the parameters
of the GEV distribution by minimizing the objective function of Equation (32),
(2) to compute flood quantiles for commonly used return periods at the 90 stream
gauge sites by using the indexed regional optimization procedure, and
(3) to compare the performance of the indexed regional optimization procedure with

that of the indexed regional probability weighted moments.

Identification of Homogeneous Regions

In a previous study, Naghavi, et al. /21 divided the state into four hydrologically
homogeneous regions, based on the topographic maps, geological maps, climatic maps, and
soil survey maps. These four regions are shown in Figure 1. In this regional study, these
four homogeneous regions along with the 90 flood gauge stations selected previous, are used
in this part of the study. There are 26 stations in the southeast region, 33 stations in the
southwest regions, 25 stations in the northwest region, and six stations in the northeast

region. Some pertinent statistics of the 90 station records have been listed in Tables 1 and

2 respectively.

The GEV Distribution and the PWM Method

The GEV distributions is defined in inverse form as:

dF) = (Eral-[h@ 1k, k=o (33)
E-a Inf-In(F)] k=0
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where £, « and k are the l&ation, scale, and shape parameters, respectively, and F ig th
curnulative probability,. When k = 0, GEV reduces to extreme value type 1 distributig
(EV1); when k < 0, GEV becomes EV2 distribution; and when k > 0, GEV becomes EV3
distribution. The mean;-variance and coefficient of skewness for the GEYV distribution are :

related to the distribution parameters as [17]:
e = &+ a(l-0)k (34)

of = o (0, - 0d)/k? (35)

ko (0-30,0, 4208
Y

Yz = -

2.15

where Q = I(1+1k), r=1,2.3. The three parameters for the regional (dimensionless)
GEV distribution can be estimated by the PWM method /7 6] as:

o~

kM __-aM
s~ Mor (l)f.'] (37)
F1+k) (1-27%)
¢ = M(G)R +a [T(1 +£) -1]/}; (38)
k= 78590 ¢ + 20554 C2 (39)
where
-2
C— Mor=2Mp . In(2) (40)
2 M(O)R -6 M(l)R +3 M(z)R In(3)
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Regional Flood Fréquency A}zalysis

T'(.) is the Gamma functlon and M, is the standardized and welghted PWM for a regmn
and is estimated by

m
1
M(k)R = Z n k=01,2. (41)

m
an i=1 (0) i

=]

-,

where m is the number of gauge stations in the homogeneous region, n; is the number of

observations at station j, and

. 1 )...(i-k)
M, =M, = E T . . k=012.. (42)
(k) — 1,0k = n 1 (n 2 ( k) n+l-g

is the k-th unbiased PWM from the observed samples,

The Indexed Regional Probability Weighted Moments (IRPWM) Procedure

The indexed procedure has gained more attention in recent years since the introduction of
the probability weighted moments (PWM) by Greenwood et al. {13]. It has been used by
Greis and Wood /8], Landwehr et al. [14], Wallis /3], Stedinger f11]. The index procedure
has been applied to the GEV distribution by Hosking, et al. /167 and Schaefer [17], and is
the recommended procedure in the United Kingdom.

Application of the index procedure to the GEV distribution consists of calculating the PWMs
from the observed data at each site within a homogeneous region, using Equation (42). Then,

the PWMs are standardized at each site by dividing each PWM by the at-site mean. Each
of the standardized PWMs are then averaged over the entire homogeneous region, using
Equation (41). These regional averaged standardized PWMs are then used to compute the
three parameters of the regional GEV distribution by using Equations (37), (38), and (39).
Regional quantiles can then be calculated for any exceedance probability from Equation (33).
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These regional quantiles are then rescaled for each site of interest by multiplying by the at-
site mean. Once the at-site quantiles are computed, comparisons can be made with any other

estimation metho_d__s using the performance indices RRASE and RAB,

Development of the Indéxed Regional Optimization (IRO) Procedure

Once the three regional parameters of the GEV distribution are estimated by the IRPWM
procedure, they serve as the inial values of the parameters for the IRO procedure. In the IRQ
procedure, the conjugate gradient optimization method (CGO) described in the first part of
this study is used to find the optimal set of parameters by minimizing the objective function
given in Equation (32). The IRO procedure can be described as follows: First, the regional
parameters «, £, and k are estimated by the IRPWM procedure. The regional quantiles _ |
(dimensionless) are then computed by Equation (33) using the unbiased plotting position
formula, F=j/(n+1), where j is the j-th smallest valye at the i-th site, and n is the number
of observations at the i-th site. The corresponding  at-site quantiles are obtained by
multiplying the regional quantiles by the at-site mean. Second, the objective function value
of Equation (32) was evaluated using the estimated and observed at-site quantiles. Third, the
CGO search algorithm was applied to search for the optimal regional parameters o, &, and -
k by using the estimated regional parameters from IRPWM and the objective function value,
Finally, the regional quantiles at some given recurrence intervals are computed by using
Equation (33). By using these optimal parameters, the corresponding at-site quantiles are
computed by multiplying the regional quantiles by the at-site mean.

Comparison between the IRPWM Procedure and the IRO Procedure

The IRPWM procedure and the IRO procedure have been applied to the four hydrologically
homogeneous regions in Louisiana, shown in Figure 1. The computed RRASE and RAB for
southeast region are listed in Table 17, for southwest in Table 18, for northwest in Table 19,

and for northeast in Table 20. For each of the four regions, the RAB is always reduced to

zero (less than 10*) by the IRO procedure. The RRASE computed by the IRO procedure is




IRPWM procedure, the larger the reduction is achieved in RRASE by using the JRO
.;ocedﬁre. Figure 4 shows this characteristic. The average RRASE and RAB for each region
y the two estimation methods are listed in Table 21. Overall, the IRO procedure reduces
he RRASE by 20 percent and reduces RAB by 100 percent as compared with the IRPWM
précedure. Thus, the JRO procedure is significantly superior to the IRPWM procedure in

rms of performance indices RRASE and RAB.

uantile Prediction

he three parameters estimated by the IRPWM procedure and the TRO procedure for each
f ihe four homogeneous regions are listed in Table 22. Once these regional parameters are
s..t:imated, the regional quantiles for a given cumulative probability F can be generated by
s1'hg Equation (33). At-site quantile can then be obtained by multiplying the regional
antiles by the at-site mean. The predicted quantiles by the IRO procedure for all of the
fations in the four regions for 2-, 10-, 25-, 50-, and 100-year return periods are listed in

able 23 and by the IRPWM procedure in Table 24.

‘Statistical tests were conducted for the 25-, 50-, and 100-year quantiles estimated by IRO,
RPWM, and MOM for the 90 gauge stations. At 0.01 significant level, the t-test, the F-test,
nd the Kolmogorov-Smimnov test showed that no significant difference in the population

ean, variance, and predicted quantiles among the three methods tested.

ﬁmmary of the Regional Frequency Analysis

__:e Tesults of this part of the study show that the generalized extreme value distribution
tted by the indexed regional optimization (IRO) procedure is better than by the indexed
gional probability weighted moments (IRPWM) procedure. The IRO procedure reduces the
RRASE by 20 percent and reduces the RAB by 100 percent as compared with the IRPWM
ocedure. The IRO procedure should be quite useful for any other similar regional
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frequency studies. It should be noted, however, that the predicted regional quantiles may
not be applied outside the physical bounds of the region from which it was calculated.
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Regional Flood Frequency Analysis

Table.17. RRASE and RAB Computed by Two Indexed Regional Procedures for the
Southeast Region

Station RRASE RAB
Number IRPWM IRO IRPWM IRO

2492000 0.137 0.219 0.037 -0.038
2492360 0.123 0.195 -0.058 -0.106
2490105 0.210 0.195 0.084 0.013
7378500 0.104 0.212 -0.014 -0.079
7375222 0.165 0.214 -0.040 -0.101
7380160 0.199 0.271 -0.099 -0.141
7375170 0.170 0.223 -0.047 -0.090
7376000 0.104 0.200 0.010 -0.063
7376500 0.163 0.261 -0.083 -0.130
7375500 0.147 0.201 0.054 -0.026
7377300 0.163 0.236 -0.063 -0.109
7376600 0.276 0.346 -0.124 -0.160
7375480 0.475 0.369 0.191 0.100
7375000 0.393 0.298 0.214 0.099
2491500 0.117 0,232 0.003 -0.073
2491700 1.546 1.191 0.693 0.492
2491350 0.357 0.295 0.150 0.072
7377000 0.281 0.214 0.113 0.016
7375800 0.466 0.387 0.282 0.180
7375307 0.764 0.578 0.429 0.294
7378000 0.141 0.247 -0.079 -0.134
7377500 0.184 0.218 0.028 -0.047
7373500 0.122 0.170 -0.037 -0.093
2490000 1.307 0.920 0.626 0.427
7373550 0.245 0.318 -0.122 -0.158
2489500 0.236 0.316 -0.107 -0.145
AVERAGE: 0.482 0.400 0.079 0.000
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Table 18. RRASE and RAB Computed by Two Indexed Regional Precedures for the
Scuthwest Region

Station RRASE ' RAB
Number IRPWM IRO IRPWM IRO
7386500 0.248 0.291 -0.130 -0.152
8012000 0.208 0.276 -0.095 -0.110
8010000 0.227 0.279 -0.121 -0.148
8015500 0.110 0.170 -0.036 -0.071
8011800 0.193 0.140 -0.014 -0.059
8013500 0.084 0.150 -0.049 -0.085
8014500 0.278 0.176 0.145 0.083
8014000 0.166 0.154 0.035 -0.003
8014200 0.264 0.145 0.112 0.052
8013000 0.197 0.124 0.008 -0.045 -
7382000 . 0.265 0.329 0.105 0.084
7381800 0.201 0.107 0.038 -0.014
8031000 0.128 0.172 -0.062 -0.093
8016800 0.143 0.187 -0.040 -0.072
8030000 0.135 0.197 -0.091 -0.118
8016400 0.091 0.165 -0.055 -0.085
8016600 0.170 0.229 -0.083 -0.104
8015000 0.494 0.363 0.252 0.177
8028700 0.197 0.259 -0.101 -0.116 ~
8029500 0.327 0.328 0.179 0.138
3014600 0.227 0.168 0.062 0.018
8028000 0.610 0.511 0.376 0.298
8013800 0.304 0.144 0.035 -0.019
8025850 0.196 0.217 0.049 0.019
8025500 0.434 0.401 0.269 0.217
7354000 0.197 0.246 -0.118 -0.143
7353990 0.496 0.307 0.214 0.135
8023000 0.174 0.124 0.007 -0.038
7351700 0.456 0.375 0.252 0.194
7351500 0.642 0.267 0.104 0.001
7351000 0.649 0.248 0.107 0.006
7344450 0.333 0.188 0.151 0.087
8014800 0.208 0.154 0.009 -0.035

AVERAGE: 0.315 0.248 0.046 0.000
FPage 56 £ ?ﬁ@:‘_‘_:—-_
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Table 19. RRASE and RAB Computed by Two Indexed Regional Procedures for the
Northwest Region

Station RRASE RAB

Number IRPWM IRO IRPWM IRO
7373000 0.633 0.507 0.325 0.219
7353500 1.049 0.819 0.574 0.429
7372500 0.231 0.287 -0.016 -0.052
7372200 0.142 0.119 -0.011 -0.078
7370750 0.156 0.225 -0.087 -0.124 B
7373110 0.588 0.525 0.347 0.269
7372000 0.249 0.191 -0.046 -0.124
7370500 0.586 0.273 0.115 -0.004
7371500 0.130 0.153 -0.016 -0.089
7352000 0.139 0.186 -0.011 -0.073
7366420 0.380 0.286 0.218 0.137
7365000 0.156 0.174 -0.056 -0.111 -
7364870 0.541 0.312 0.105 0.004
7365500 0.232 0.261 0.040 -0.002
7366000 0.253 0.197 0.004 -0,052
7366200 0.177 0.172 0.008 -0.057
7364700 0.463 0.465 0.270 0.215
7352500 0.180 0.243 -0.110 -0.147
7348700 0.119 0.140 -0.016 -0.076
7349500 0.170 0.251 -0.119 -0.164
7348725 0.648 0.333 0.068 -0.042
7348800 0.101 0.135 -0.033 -0.085
7347000 0.327 0.373 -0.185 -0.205
7365800 0.541 0.427 0.362 0.269
7362100 0.085 0.162 0.006 -0.057
AVERAGE; 0.404 0.329 0.070 0.000

Page 57 é?ﬁ@m




Table 20. RRASE and RAB Computed by Two Indexed Regional Procedureg for ¢
S ) Northeast Region

Station RRASE

RAB

Number IRPWM IRO IRPWM IRO

7369500 0.070 0.138 -0.017 -0.028
7370000 0.088 0.104 0.022 0.002
7368500 0.049 0.091 0.000 -0.012
7364500 0.262 0.157 0.045 0.014
7368000 0.157 0.059 0.035 0.006
7364190 0.266 0.175 0.046 0.017
AVERAGE: 0.173 0.127 0.022 0.000

Table 21. Average RRASE and RAR Computed by Two Indexed Regional

Procedures
_ IRPWM Procedure IRQ Procedure
Region RRASE RAB RRASE RAB
Southeast 0.482 0.079 0.400 0.000
Southwest 0.315 0.046 0.248 0.000
Northwest 0.404 0.070 0.329 0.000
Northeast 0.173 0.022 0.127 0.000
AVERAGE: 0.345 0.054 0.276 0.000
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Region IRPWM IRO | IRPWM IRO
{_-ﬁ“_’-—.T_.‘J
Southeast 0.457 0.502 0.651 0.623
Southwest 0.400 0.453 0.601 0.588
Northwest 0.425 0.459 0.551 0.530
Northeast 0.342 0.403 0.864 0.859
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Table 23. Predicted Qua:f;tﬁes for 90 Louisiana Stations by Using the IRO Procedure
for the GEV Distribution

Return Period (year)

Station 2 10 25 50 100
2492000 21416 50973 68761 83418 99327
2492360 5917 14084 19600 23050 27446
2490105 2440 5808 7835 9505 11318
7378500 27954 66536 89756 108389 129656
7375222 2111 5026 6779 8225 9793
7380160 969 2307 3112 3775 4495
7375170 3804 9056 12217 14821 17647
7376000 5545 13199 17805 21601 25720
7376500 2976 7034 9556 11593 13804
7375500 14484 34474 46504 56417 67177
7377300 24321 57889 78091 94737 112805
7376600 1114 2652 3577 4340 5168
7375480 6948 16537 22309 27064 32226
7375000 4996 11891 16041 19461 23172
2491500 21773 51823 69909 84811 100986
2491700 3490 83061 11205 13593 16186
2491350 2495 5937 8009 9717 11570
7377000 22438 53406 72044 87401 104070
7375800 4782 11383 15355 18628 22181
7375307 4474 10649 14365 17427 20750
7378000 10198 24273 32744 39723 47299
7377500 7144 17004 22938 27828 33135
7373500 6120 14568 19651 23840 28387
7369500 2771 4283 4805 5117 5374
7370000 5492 8486 9520 10137 10648
7368500 1101 1702 1909 2033 2135
7364500 7103 10976 12313 13112 13772
7386500 933 2422 3501 4494 5680
8012000 7134 18514 26761 34352 43410
8010000 3968 10293 14885 19107 24146
8015500 26512 68806 99451 127662 161323
8011800 2168 5627 8133 10440 13192
8013500 13899 36072 52138 66923 84575
8014500 13007 33756 48790 62630 79144
8014000 4414 11456 16559 21256 26860
8014200 3987 10348 14957 19200 24263
8013000 13199 34254 49511 63555 80313
7382000 1705 4424 6394 8208 10372
7381800 2179 5654 8172 10490 13256
7373000 3524 10045 15064 19856 25756
7353500 2169 6183 9273 12223 15855
7372500 3379 9630 14442 19036 24692
7372200 19269 54922 82367 108568 140828
7370750 1828 5211 7815 10301 13361
7372110 2753 7846 11766 15509 20118
7372000 6591 18785 28172 37134 48168
7370500 4531 12914 19367 25528 33113
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Table 23. Predicted Quantiles for 90 Louisiana Stations
Using the TRO Procedure for the GEV Distribution (Cont’d)

Return Period (year)
25

Station 2 10 50 100
7371500 6370 18156 27228 35890 46554
7352000 2546 7255 10880 14342 18604
7366420 3892 11094 16638 21931 28447
7365000 5449 15531 23292 30701 39824
7364870 2116 6030 0044 11921 15463
7365500 2833 8074 12109 15961 20703
7366000 5885 16773 25154 33156 43008
7366200 3397 9682 14519 19138 24824
7364700 3176 9051 13574 17892 23208
8013000 1268 3368 4869 6250 7898
8016800 3389 8796 12714 16320 20623
8030000 1939 5032 7273 8336 11798
8016400 3732 9687 14001 17972 22711
8016600 3863 10025 14490 18600 23505 -
8015000 6569 17049 24643 31633 39973
8028700 713 1851 2676 3435 4341
8029500 2932 7608 10997 14117 17839
8014600 1950 5062 7316 93497 11868
8028000 10594 27496 39743 51017 64468
8013800 1007 2614 3778 4850 6128
8025850 602 1563 2259 2899 3664
8025500 4919 12767 18453 23688 29934
7354000 2257 5857 8466 10867 13733
7353990 3689 9575 13839 17765 22449 ~
8023000 1898 4925 7118 9137 11547
7351700 1145 2972 4295 5514 6968
7352500 3465 9876 14811 19523 25324
7351500 4571 11863 17148 22012 27816
7351000 3233 8389 12126 15565 19669
7344450 3153 8182 11826 15181 19184
2490000 1959 4662 6289 7629 9084
7348700 6602 18816 28219 37195 48247
7349500 3786 10791 16183 21331 27669
7348725 1481 4222 6332 8346 10825
7348800 1802 5137 7703 10154 13171
7347000 1106 3151 4725 6228 8079
7373550 188 447 603 732 871
7364190 4606 7256 8140 8668 9104
7365800 5359 15273 22005 30192 39162
7362100 6373 18163 27240 35906 46574
2489500 40208 95702 129099 156619 186489
8014800 3939 10222 14775 18966 23968
7368000 189G 2934 3291 3505 3681
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. CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are constrained to the study scope of the 90 sets of observed flood

‘data and 690 sets of Monte Carlo simulated data:

The MALS method always performs better than MOM regardless of the type of data
or the performance index used. As compared with MOM, the MALS reduced, on
the average, the RMSE by 13.6 percent for the 90 sets of Monte Carlo simulated data
(preliminary test) and by eight percent for the 600 sets of Monte Carlo simulated data
( extended test), and reduced the RRASE by 13.5 percent for the 90 sets of observed
data. The MALS reduced BIAS by 33 percent for the 90 sets of Monte Carlo
simulated data and by 47 percent for the 600 sets of Monte Carlo simulated data, and
reduced the RAB by 47 percent for the 90 sets of observed data.

The MALS yields the smallest BIAS for the 690 sets of Monte Carlo simulated data
and the smallest RAB for the 90 sets of observed flood data as compared with MOM,
MLE, and MME.

MLE and MME were the best two methods in terms of RMSE but the worst two in
terms of BIAS for the 690 sets of Monte Carlo simulated data. They were also found
to be the worst two methods in terms of RRASE and RAB for the 90 sets of observed
flood data. MLE and MME generally under-estimated the flood quantiles for larger
return periods (larger than 50 years).

The MALS predicts flood quantiles more accurately for larger return periods than any
other three methods tested.

The MALS yields nearly constant values of RRASE and RAB regardless of what
skew-correction factor is used.

When sample size is sufficiently large, for example, 500, the MALS yields nearly
constant values of RRASE and RAB, regardless of the number of samples used.
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n The 1RO parameter estimation procedure fitted the generalized extreme valye
distribHO0 better than the IRPWM procedure. On the average, the IRO procedure
od the RRASE by 20 percent and the RAB by 100 percent, as compared with
reduc WM procedure for the 90 observed flood data.
(3) ::eiendcd IRO procedure was reasonably accurate for predicting flood quantileg
at ung auged sites with drainage areas of less than 1000 square miles.
Even though th® results in this study indicate that LP3/MALS and GEV/IRO perform
re&SQHably better than other combinations of distributions and estimation methods tested, a

More ensive Monte Carlo study may be needed for its inclusion in the design
Comprel?
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TER §
APPLICATION AND IMPLEMENTATION OF RESULTS

Summary

In the first part of a three-part study, a comprehensive investigation was conducted to find
a superior estimation method by using the optimization techniques for the log-Pearson type
3 distribution for at-site flood frequency analysis. In the second part of the study, the
selected optimization technique was used to develop a regional estimator for the generalized
extreme value distribution (GEV). In the third part of this study, the indexed regional
optimization procedure was extended to estimate the flood quantiles at ungauged sites. Ninety
sets of observed Louisiana flood data and 690 sets of Monte Carlo simulated data were used
for the study. By using conventional flood frequency analysis, five distributions and three
estimation methods were used to find the best combination of distribution and method for the
Louisiana flood data. The log Pearson type 3 distribution with the method of moments
(MOM) was found to provide the best fit to the data.

In order to search for a better estimation method than MOM, 20 combination methods were
proposed and tested. The final selection was a combination of the method of moments and
the method of optimization (named MALS). By this method, the population mean and
variance of the LP3 distribution are estimated by MOM and the population skewness is
estimated by the least square method (LSM) with the objective function of minimizing both
the relative root average square error (RRASE) and relative average bias (RAB). The MALS
performed better than MOM regardiess of the type of data or the performance index used.
There are several advantages to use MALS: first, MALS predicts flood quantiles more
accurately for larger return periods as compared with MOM, MLE, and MME; second,
MALS yields a nearly constant RMSE and BIAS when using different bias-correction factors
for the coefficient of skewness; third, when the sample size is sufficiently large, the RMSE
and BIAS obtained from MALS are nearly the same regardless of the number of samples
used; and finally, MALS always yields the smallest BIAS regardless of the type of data used.
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In the second part of the study, a combination of the method of probability wgigﬁ'ted
moments and the method of least Squares was developed (named IRO procedure), using the
regional index technique. The parameters of the generalized extreme value distribug
estimated by the indexed regional probability weighted moments (IRPWM) procedure We;g
used as the initial estimates for the RO procedure. Computed results show that the IRO?
procedure yields a smaller RRASE value as compared with the IRPWM procedure for ghé
observed data. Moreover, the IRO procedure reduces the RAB to a nearly zero value (1{33;.

than 10 for the observed data,

In the third part of this study, the IRO procedure was extended to predict flood quantiles at
ungauged sites in Louisiana by using the regional regression equations developed by
Naghavi, et al. /21, Limited verification showed that the extended estimation procedure was

reasonably accurate if the watershed drainage area is between 10 and 1000 square miles,

Significance of Results

Table 27 shows the estimated 100-year quantiles for 11 Louisiana gauge stations at which
MOM predicted the 100-year quantiles at least 15 percent larger than those of MALS. On
the other hand, Table 28 shows the estimated 100-year quantiles for 10 stations at which
MOM predicted the 100-quantiles at least 15 percent smaller than those of MALS. For the
stations listed in these tables, the two methods predict significantly different quantiles. For
example, the difference in predicted quantiles for the two methods at station 2491700 is as
high as 54 percent. Therefore, it is very important to choose an estimation method within
a reasonable level of confidence for design work. The following two examples explain how
such differences affect the design length of a bridge, consequently affecting the construction

cost.

Example 1: The existing bridge at Lawrence Creek (station 2491700) is 458 feet long.
The predicted quantiles at 100-year return period by the MALS and MOM are 36687 and
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16786 cfs respectively. The‘correspon-ding velocities at this site are 7.19 and 3.29 ft/sec. The
corresponding design length by MALS is about 500 feet and by MOM, about 400 feet.

Example 2: The existing bridge at Bayou Funny Louis (Station 7372500) is 352 feet
long. The predicted quantiles at 100-year return period by the MALS and MOM are 25597
and 36310 cfs respectively. The corresponding velocities at this site are 5.94 and 8.42 ft/sec.
The corresponding design length by MALS would probably the same as the existing bridge
length, and the design length by MOM would increase to 420 feet.

Final Product Delivery and Training Requirements

The procedures described in this report are available in FORTRAN language on the
LaDOTD mainframe system. Users can easily use the computer programs to predict flood
quantiles for a set of observed data. The computer programs are well documented and

require minimal level of training for use.
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. . APPENDICES

A: Algorithm of the Conjugate Gradient Optimization (CGO)

Suppose the following generic function is to be minimized:
Z = F(x, x5, ..., xp) (A.1)

where x, 1= 1,2, ..., n,aren independent variables or parameters. Let VF be the gradient

vector defined as

daF dF aF
= - e e . - 2
VF -E_Xi “B_XZ_ _a__Xn (A.2)
and Jet X' = (x/, x;, ..., x.)) be the minimum point found at the i-th iteration, ¢, be the error

tolerance for X, and ¢ be the error tolerance for F(X). The conjugate gradient optimal
search algorithm can be described as follows:
Step 1: Choose a starting point X

Step 2: Compute the conjugate direction:

di = VF (X)) + % gt (A.3a)
or

d' = Vr(xi) + JVF(X) li\;;;i(‘};?; VE (X)) g (A.3b)
and

d' = VR(X9 (A.3¢)
where

[VF (X1) | =); [%T (A.4)

Step 3: Pick up a value t by some one-dimensional search algorithm such
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that F(X' + t d) is minimized.

Step 4: Update the current minimum point found. o

Xt =X+t d (A.5)
Step 5: Check termination criterion.

If IVEX) | < &

Or IFCX*Y - FXD < g

Or I X < g

then stop

Otherwise, repeat beginning with Step 2.
Computation showed that equation (A.3b) is slightly better than equation (A.3a).
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B: Algorithm for generating the LP3 random samples

Let NSET be the nums;ar of LP3 samples to be generated, N be the sample size, p, be the
population mean of the log-transformed variable Y, o, be the standard deviation of the
random variable Y, «, be coefficient of skewness, R(), i=1,2, ..., N, be the i-th random
cumulative probability to be generated by the IMSL subroutine RNUN /367 for a LP3

random sample, and a, b, and c be the population parameters of the LP3 distribution.

Step 1. Select N, NSET, g, b, and c.
Step 2. Compute g, 6y, and v, by using Equations (2), (3, and (4).
Step 3. Initialize the random-number generator by selecting ISEED=123457 and call the
IMSL subroutine RNSET(ISEED).
Step 4. Generate the Nset LP3 samples with size N. This is done by following FORTRAN
statements:
DO 10i=1,NSET
Call RNUN(N,R)
PO 5I=L,N
Compute the quantile for each random cumulative probability R(i), 1=1,2,...,N,
by using Equations (26) through (29).
5 CONTINUE
10 CONTINUE
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